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Advanced time-series analysis (University of Lund, Economic History Department) 

 30 Jan-3 February and 26-30 March 2012 

Lecture 1 Fundamentals of time-series, serial correlation, lag operators, stationarity. Long- and 
short-run multipliers, impulse-response functions. 

 

1.a. Fundamentals of time-series, serial correlation: 

Time series contain observations of random variable Y at certain points of time. 
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Y is an unknown process (Data Generating Process - DGP) that we wish to understand, uncover, but 
all we have are just some realizations of it (a sample).  

Observations in time series has a fixed order, you cannot reorder the observations as you like. 

Serial correlation must be given attention.  

 

We can characterize time series (y) by three fundamental statistics: 

Expected value ( ( )tE y ), variance ( 2

0 ( ) ( ( ))t t tVar y E y E y    and autocovariance:  

 ( , ) ( ( ))( ( ))s t t s t t t s t sCov y y E y E y y E y        

Autocorrelation at lag k (Autocorrelation function at lag k: ACFk) is defined as: 
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It is worthwhile to compare this with the standard formula for linear correlation: 
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 They are not the same, but they should be reasonably close 

provided y is homoscedastic.  

Useful to understand ACF(k) is to see it as a regression coefficient. Let us take the following 
regression: 

0 1t k t ty y       with 2(0, )t IID    

The OLS estimator for the slope coefficient is: 1
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How to test is autocorrelation is present? 

Q-tests: 

Box-Pierce: 2

1

( )
k

BP i

i

Q k T q


  and Ljung-Box: 
2

1

( ) ( 2)
k
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LB
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q
Q k T T

T k

 


 . 

In case of no autocorrelation (this H0), both statistics should follow a chi-squared distribution with k 
degrees-of-freedom. 

Partial Autocorrelation Function (PACF): the autocorrelation between yt and yt-k with the correlation 
between yt and all lags yt-1…yt-k-1 removed. 

This is the easiest to see as a coefficient of a multivariate regression: 

0 1 1 2 2 ...t t t k t k ty y y y             

Then βk is the PACF(k). That is, the relationship between yt and yt-k with all lower order 
autocorrelation captured. 

The graphical tool that combines ACF and PACF is called the correlogram. 

 

1.b. Lag-operators 

This might seem useless for some, but it  helps a lot to be able to correctly read the literature and to 
understand fundamental concepts: 

Let L be an operator with the following feature: 

1t tLy y  that is multiplying by L creates a time series lagged by one period. 

2

2( )t t tL Ly L y y   . Generally: k

t t kL y y   

The lag operator is commutative, distributive and associative:  

For example: 

1 2

1 2( ) t t tL L y y y    , 1 2 3

3t t tL L y L y y   , 1

1t tL y y

  

The operation: 1(1 ) t t tL y y y    is called first-differencing. 

An important equality is: 

   
1 2 2 3 31 1 ... ( )t t tL y L L L y L y    


       provided 1  (the series at the right-hand 

side is absolute summable).  

Proof: multiply both sides by  1 L : 
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      2 2 3 3 2 2 3 3 2 2 3 3 4 41 1 ... 1 ... ...t ty L L L L y L L L L L L L                         

 1 n n

t ty L y   

Since  lim 0n n

t
n

L y


 if 1  so the equality holds. 

  

1.c. Stationarity 

 

Stationarity in the strict sense: A process is called strictly stationary if its probability distribution is 
independent of time. In other words: if we have a time series observed between time t and T, then 
the joins probability distribution of these observations should be the same as those observed 
between any t+k and T+k.  

What we actually say here is that the main characteristics of the time series should remain the same 
whenever we observe it. This is however a theoretical concept. 

Stationarity in the weak sense or covariance stationarity defines stationary processes in term of their 
moments. This makes this definition easier to work with and testable. 

Time series y is called covariance stationary if: 

1. It has a finite mean: ( )tE y   . (This means that the expected value should be 

independent of time – no trend!) 

2. It has a finite variance:  2( )t yVar y    

3. Its autocovariance depends on the difference of the observations (k) only and is independent 

of time: ( , ) ( , )t t s t k t s kCov y y Cov y y     

Let us assume that we have an AR(p) process as follows: 

1 1 2 2 ...t t t p t p ty y y y           

This can be rewritten with lag operators as follows: 

 2

1 2 ... p

t p t ty L L L y        (this we call a polynomial form, denoted as ( )L ) 

or 

 2

1 21 p

p t tL L L y        (the left-hand side is called the inverse polynomial form) 

The above series is stationary if all the roots (solutions) of the following inverse polynomial: 

2

1 21 0p

pz z z      lie outside the unit circle (if the roots are real (not complex) it means that 

all roots should be larger than one in absolute value).  



4 

 

Beware: this rule is only correct if we have the inverse polynomial form. If we solve the standard 
polynomial form then the roots should be within the unit-circle so that the process is stationary. 

 

Some examples: 

Ex 1.1:  10.5t t ty y    

The inverse polynomial form is: 

(1 0.5 ) t tL y     

The characteristic equation is: 

1 0.5 0z  , where the root is: 2z  so this AR(1) model is stationary. 

 

Ex 1.2:  1 20.5 0.3t t t ty y y      

The inverse polynomial form is: 

2(1 0.5 0.3 ) t tL L y      

The characteristic equation is: 

21 0.5 0.3 0z z   , where the roots are: 
 

1,2

0.5 0.25 4 0.3 1

0.6
z

    



1 22.84, 1.17z z    

Both roots exceed 1 in absolute terms, the above AR(2) model is stationary. 

 

Ex 1.3:   1 20.4 0.2t t t ty y y      

The inverse polynomial form is: 

2(1 0.4 0.2 ) t tL L y     

The characteristic equation is: 

21 0.4 0.2 0z z   , where the roots are: 1,2

0.4 0.16 4 0.2 1

0.4
z

   
 . 

There is a problem now because the expression under the square root is negative. The roots are 
complex in this case. Do not worry, using what we now about complex numbers helps:  

0.16 4 0.2 1 0.64 0.64 0.8i i       ( 1i   ) 
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So: 1,2

0.4 0.8
1 2

0.4

i
z i


   The absolute value of these complex numbers is its modulus: 

 2 21 2 1 2 1 2 5 2.236i i       , which is larger than one. The process is stationary. 

This means that the process will return to its mean in an oscillating way. 

It is because of potentially complex roots that we mention unit circle in the definition. Simply, the 
modulus looks like an equation of a circle. What the definition required was that if the complex root 
was a+bi or a-bi then a2+b2>1. That is the modulus lies outside of a circle with unit radius. 

 

Let us find a non-stationary series! 

This requires that the roots are on or inside the unit circle: 

The series: 1t t ty y   or (1 ) t tL y   is non-stationary, since the solution is: 

1 0 1z z    This is the case when we say that the above process contains a unit-root. 

If the roots are inside the unit circle, the process is called explosive, but this case does not occur in 
social sciences so we do not pay extra attention to this case. 

The process 1t t ty y   with 2(0, )t IID   is called a random-walk. This is a fundamental time-

series model type. The idea is that the change of the process is completely random since: 

t ty   where 2(0, )t IID   that is it has no autocorrelation, i.e., it is not predictable. 

Another version is the random-walk with drift: 

1t t ty y    , 2(0, )t IID    which is also a non-stationary series but has a trend with slope α. 

In order to understand why these processes are non-stationary let us express their value from their 
starting value y0. 

0 0

1 0 1

2 1 2 0 1 2

3 0 1 2 3

0

1

t

t i

i

y y

y y

y y y

y y

y y



  

  






 

    

   

 

 

We can observe that even after t periods, the initial value is the expected value of the series 

(   0tE y y ), and it remembers all shocks that occurred. The process has a “long-memory”. What 

about its volatility? 
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if: 
0

1

t

t i

i

y y 


  then 2 2

1
i

t

y

i

 


 that is the variance of a random-walk equals the sum of the 

variance of all previous and the current innovations. If we assume homogeneity of the innovations, 

that is:   2 2

i   for all i, then 2 2

y t  . Obviously the variance of y depends on time, that is, it 

cannot be stationary, since as 2 2lim limy
t t

t 
 

   . 

If we have a random-walk with drift: 

0 0

1 0 1

2 1 2 0 1 2

3 0 1 2 3

0

1

t

t i

i

y y

y y

y y y

y y

y y t

 

     

     

 




  

       

      

  

 

That is:   0tE y y t  and 2 2 2

1
i

t

y

i

t   


   

This process is non-stationary for two reasons: firstly, its expected value depends on time (has a 
trend); secondly its variance also depends on time. 

The non-stationary processes are also known as non-invertible. 

The reason is that as you remember the expression:  

   
1 2 2 3 31 1 ...t tL y L L L y   


      was only true if 1  , that is, the infinite series at the 

right hand side was convergent (also called absolute summable):  lim 1 n n

t t
n

L y y


  if 1  . If 

1  ,  lim 1 0n n

t
n

L y


  that is:  
1

1 0tL y


  which cannot be unless all observation are zero. 

In short, the random-walk process is non-invertible. 

Wold’s representation theorem says that every covariance-stationary time series Yt can be written 
as an infinite moving average (MA( )) process of its innovation process. 

That is, all covariance stationary series can be also seen as a linear combination of all the random 
shocks, innovation that occurred to it. 

 

1.d. Short- and long-run multipliers. 

An important and useful was to look at time-series by the effect of some innovations on their value. 

Obviously, if we had a series like this: 

0 1 1t ty y    we would  find a constant value for all observations sooner or later, equaling its 

expected value, 0

11
tEy







, independently of the initial value. This is a deterministic process. 
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There is some process behind the time series that drives the series, it is called the forcing process (or 
input variable). 

The forcing process may contain exogenous variables (denoted by X) that might be observed or not, 
or purely random shocks. In the simplest case the forcing process is a purely random 

innovation 2(0, )t IID   , making the series a stochastic time series. 

Now we can write: 0 1 1t t ty y      

The dynamic multiplicator is the effect of a change in the input variable in period t on the value of y 

in period t+j. In this example: 2t

t

y





 

This is easy to find out now, since the process can be written as: 

 1

1 0(1 )t ty L     , hence, provided 1 1  ,  2 2 3 3

1 1 1 0(1 ...)t ty L L L          . 

So the dynamic multiplicator after 2 periods is: 22
1

2

t t

t t

y y


 




 
 

 
 

. It is obvious that as 1 1  , the more time passes after a shock, the lower its effect on current value 

of the y is going to be. The Impulse-Response Function (IRF) visualizes the effect of a change in an 

input variable in t on y in t+j for (j=0….k). 

IRF of a unit impulse in t  if the process is 1.7t t ty y     

 

The long-run effect of an input variable on y is the effect of a permanent change in the input variable 

on y with j→∞. This equals with the sum of the dynamic multiplicators for all j=0…∞, which is called 

the cumulative IRF.  
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2 3

1 1 1

0 1

1
1 ...

1

t j

j t

y
  

 







     

 
  

Actually you can calculate the long-run effect (this can be called steady state as well) even simpler: 

Let us assume we have the AR(1) process as above: 

0 1 1t t ty y     , we know that if the process is stable (stationary), the shock’s total effect will 

converge to a finite value. So finally a new equilibrium value of y will be reached where: 

*

1 2 ...t t ty y y y     . We just need to substitute this into the model: 

* *

0 1 ty y      

So: * 0

1 11 1

ty
 

 
 

 
the long run effect is: 

*

1

1

1t

y

 




 
. 

And here we go.  

The cumulative IRF of a unit impulse in t  if the process is 1.7t t ty y     

 

Note: observe that after a few periods the total effect approaches 1/0.3=3.333. 

What if we have a more complex forcing process? 

Say: 0 1 2 1t t t ty x x        
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The short-run multiplicators are:  

1
t

t

y

x






 , so the immediate effect of a unit increase (impulse) in x on y equals β1.  

2

1

t

t

y

x








 , that is, after one period, the same unit increase (impulse) in x has an effect of β2 on y. 

0t

t j

y

x 





 for j>1, that is after one period, an impulse in x has no effect on y at all. 

But what was then the total (long-run) effect? 

 1 2

1

t t

t t

y y

x x
 



 
  

 
 

You can also use the alternative way of thinking: at equilibrium (when all changes are complete) the 

system settles down at its steady-state (denoted by an asterisk). 

*

1 2 ...t t ty y y y     and *

1 2 ...t t tx x x x     so: 

 * * * *

0 1 2 0 1 2t ty x x x               which yields: 
*

1 2*

y

x
 


 


. 

Example: Determine the dynamic multipliers and the long-run effects of a change in x in the process 

(this is an ARX(1) process): 

0 1 1 2t t t ty y x        

2
t

t

y

x






, 1

1 2

1 1 1

t t t

t t t

y y y

x y x
 

  

  
  

  
, 21 2

1 2

2 1 2 2

t t t t

t t t t

y y y y

x y y x
  

   

   
   

   
, 1 2

it

t i

y

x
 







 

Or, using lag operator makes our work much easier (for an AR(1) process at least..)! 

1 0 2(1 ) t t tL y x       →

    1 2 2 3 3

1 0 2 1 1 1 0 2(1 ) 1 ...t t t t ty L x L L L x                    taking the 

derivatives of which with respect to different lags of x yields the same dynamic multipliers as above. 

The long-run effect of actually much simpler to calculate. Let us use our simple method: 
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 * * *

0 1 2 ty y x       → * *0 2

1 1 11 1 1

ty x
 

  
  

  
→

*

2

*

11

y

x








 
 

If 10.7 0.3t t t ty y x    then 

The IRF of a unit impulse in 
tx  if the process is 10.7 0.3t t t ty y x     

 

The cumulative IRF of a unit impulse in tx  if the process is 10.7 0.3t t t ty y x     

 

Note: the cumulative IRF nicely converges to the long-run effect: 
.3

1
1 .7




 

 


