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Advanced time-series analysis (University of Lund, Economic History Department) 

 30 Jan-3 February and 26-30 March 2012 

Lecture 10 Vector Error Correction (VEC): Johansen technique of cointegration testing, empirical 

applications. 

 

10.a Multiple cointegrating vectors 

 

With the single-equation time-series techniques we could only estimate a single cointegrating vector. 

Let us take an example: we have three I(1) variables, xt, yt, and zt that are thought to be cointegrated 

of order one. If you have a single cointegrating vector (where the coefficient of y is normalized to 

one:  0 1 21, , ,      β  

Then you can write the equilibrium value of yt as follows: 

0 1 2t t ty x z      

and the deviation from it as: 

t t tu y y   

Now the error-correction model is: 

10 11 12 1 1 1t t t ty x z u e            , here we expect that α1t is negative and is between 0 and -4, 

so that you have a return to the equilibrium value of y. (Now the adjustment coefficient is denoted 

by alpha, and the short-run coefficients are denoted by theta; this is different than in the lecture 

notes no. 6, where we used gamma for the adjustment coefficients and alpha’s for the immediate 

effects, but the current one seems the standard (most common) notation for a VEC.) 

You could actually rewrite this equation with the change of any other cointegrated variables at the 

left-hand side: 

20 21 22 2 1 2t t t tx y z u e            , this also makes sense, but since ut is still the deviation of yt 

form its equilibrium value and not a deviation of xt from its own equilibrium value, α2t does not have 

to be negative. Actually what this coefficient is going to show you is, how xt reacts if yt deviates from 

its equilibrium: if this relationship is symmetrical in the sense that both xt and zt are going to adapt, 

you expect that α2t is going to be different from zero. Let us assume that β1 is a positive number! In 

this case, if ut gets positive (yt is above its equilibrium), xt may also react to this by an increase an so 

removing some of the deviation. In this case you should obtain a positive value for α2t. 

 

Now, let us see substitute the cointegrating vector into the ECM: 

  10 1 0 11 12 1 1 1 1 1 1 2 1 1t t t t t t ty x z y x z e                       

 20 2 0 21 22 2 1 2 1 1 2 2 1 2t t t t t t tx y z y x z e                       

 30 2 0 31 32 3 1 3 1 1 3 2 1 3t t t t t t tz y x y x z e                       

Believe or not, we are already quite close to a VEC with a single cointegrating vector. I know that it is 

not a very popular suggestion but let us rewrite the above system of equations into matrix form: 
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 
11 12 10 1 0 1 1 1,

21 22 20 2 0 2 1 2 1 2,

31 32 30 3 0 3 1 3,

1

1 1

1

t t t

t t t

t t t

y y e

x x e

z z e

     

       

     







            
         

                  
                       

 

or 

1
  t t tAΔY δ αβY e very often the product αβ  is  denoted by Π .  

Now we are going to look at the option when you have two cointegrating vectors: 

 

12 13 1 11 21 1 1,

12 13

21 23 2 12 22 1 2,

22 23

31 32 3 13 23 1 3,

1
1

1
1

1

t t t

t t t

t t t

y y e

x x e

z z e

    
 

    
 

    







           
            

                                        

 

In standard form it would look: 

1 12 13 11 1 12 1 13 1 21 1 22 1 23 1 1,

2 21 23 12 1 12 1 13 1 22 1 22 1 23 1 2,

3 31 32 13 1 12 1 13 1

( ) ( )

( ) ( )

( )

t t t t t t t t t t

t t t t t t t t t t

t t t t t t

y x z y x z y x z e

x y z y x z y x z e

z y x y x z

        

        

     

     

     

  

            

            

         23 1 22 1 23 1 3,( )t t t ty x z e       

 

Of course, by a simple equation by equation estimation you could never separate the two vectors, so 

you could not estimate them. What you would estimate for the first equation is: 

     1 12 13 11 21 1 11 12 21 22 1 11 13 21 23 1 1,t t t t t t ty x z y x z e                            

and so on for the rest. As you can see, even if there were multiple cointegrating vectors, you could 

only estimate some kind of combination of them by a single equation method. So instead we prefer a 

vector approach, estimating a whole system and estimating matrix П from that. 

 

But first of all: what does it mean if you have multiple cointegrating vectors? When you have only a 

single one, you interpreted the existence of the cointegration by assuming that there was some kind 

of equilibrium relationship among your variables (a kind of common trend or co-movement) that did 

not allow them to wander off from this path indefinitely. Now you only need to assume that if you 

have k endogenous variables, you may have at most k-1 number of equilibrium relationships that 

exist and operate simultaneously. Let us take an example: the long-run movement of exchange rates 

can be explained by two mutually not-excluding theories: purchasing power parity (PPP) and 

uncovered interest rate parity (UIP). 

PPP is based on the law of one price, that the purchasing power of a currency should be the same in 

all countries, i.e. spot exchange rates should adjust so, that the same good costs the same 

everywhere. That is: * *ln ln lnt t t t t tP S P S P P    , where tP and *

tP are the price of the same 

good at home and abroad respectively, while St is the spot exchange rate expressed as domestic 

currency per one unit of foreign currency. This is clearly a mechanism that can govern long-run 

movement of foreign exchange rates. 

The UIP is about investment decisions. Let us assume that you can invest 100$ in dollar in the USA at 

interest rate of 5%, or you can invest the same amount of money in euro at interest rate 4% but first 

you need to convert your money to euro at the current exchange rate of 1.2 $/€.  So after the first 

year you either have 5$ or 0.04*100/1.2=3.33€. Which one is the better? It depends on what 

exchange rate we expect at the end of the year? If it is under 5/3.33=1.5 then it is better to stay with 
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the in dollar denominated investment. If you expect the dollar depreciates more, and it gets above 

1.5 $/€ then you should rather go for the investment in euro. Obviously the equilibrium is when it 

does not matter in which currency you have your investments because one you bring it to the same 

currency, they have equal payoff. 

*1(1 ) (1 )t t
t t

t

E S
i i

S

   where I and i* are the nominal interest rates on your investments in 

domestic and foreign currency respectively, and 1t tE S  is the expectation in t about the spot 

exchange rate in t+1. In order that the equality holds, if foreign interest rates rise with respect to the 

domestic ones, you expect that S is going to fall, that is, the domestic currency appreciates/foreign 

currency depreciates. 

So: *

1( ln )t t t tE S i i   , where we made us to the approximation: ln(1 )x x   

These are two mechanisms that may both exist and affect the change in exchange rates. This can 

finally lead to two cointegrating vectors. Of course this is just a single example of many possibilities. 

 

 

10.b From VAR to VEC 

 

In the previous section we approached cointegration with the possibility of multiple cointegrating 

vectors departing from an Engle-Granger (single equation) method. Let us arrive at the same, but this 

time departing from a VAR! 

Say, we have a VAR(2): 

1 2    t 1 t 2 t tY δ Θ Y Θ Y e  

This can be rewritten in a Vector Error-Correction (VEC) form as follows: 

 1 2 1 1 1 1                 t t t 1 t 2 t t t 1 t tY Y Y δ Θ Θ -I Y Θ Y e δ ΠY Γ Y e  

So from a VAR(2) you obtained a VEC(1) model: 

If you find that a VAR(1) representation fits your data the best and wish to estimate a VEC(0) as 

follows: 

1  t 1 t tY δ Θ Y e  

  1 1 1          t t t 1 t t t tY Y Y δ Θ -I Y e δ ΠY e  

Generally, any VAR(p) system can be rewritten as VEC(p-1). 

1

p

i i

i





  t t tY δ Θ Y e  

1 1

1 1

1 1 1 1

p p p p

i j i i i

i i j i i

 

   

    

  
              

   
   t t t t t t t

Y δ Θ - I Y Y e δ ΠY Γ Y e  

Let us assume that we have a two-variate VAR(1) system: 

1 1 1 11 11 12

2 2 1 22 21 22

t t t

t t t

y y e

y y e

  

  





        
          
        

 

The matrix П from the VEC(0) representation is going to be: 
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11 12

21 22

1

1

 

 

 
  

 
Π  

Obviously, if 11 22 12 211, 1, 0       the above is a zero matrix, and this can be written as 

follows: 

1 1 1 11

2 2 1 22

1 0

0 1

t t t

t t t

y y e

y y e









        
          

       
or 

1 1 1 1 1t t ty y e    and 2 2 2 1 2t t ty y e     

That is, both y1 and y2 are random walk processes and independent of each other (no cointegration). 

In this case the 2x2 matrix П is a zero matrix so its rank is by definition 0. 

So, generally, when matrix П has zero rank, we have non-stationary variables that are not 

cointegrated. 

 

What if the rank of the matrix П is less than k but higher than zero, so it has a reduced rank? 

In this particular case it means that, if you have: 

11 12

21 22

1

1

 

 

 
  

 
Π  

then the trace should be zero (the matrix is singular): 

  11 22 21 121 1 0        

This is possible if  11 211c    and 12 22 1c   , so the two rows of columns are linearly 

dependent. 

Since Π αβ  11 11 11 11 21

11 21

21 21 11 21 21

    
 

    

   
    
   

Π obviously the two rows (columns) of the 

matrix П are dependent. So you can create the 2x2 matrix as a product of a 2x1 and a 1x2 vectors. 

This is cointegration, and you have a single cointegrating vector. Of course it is possible that you 

normalize the element of the cointegrating vector for one of the variables to one. If you choose, say, 

β11=1, then: 

21
11 11

1111 21

21 2111
21 21

11

1


 

 

 
 



 
 

       
   
 
 

Π . 

We can conclude that if the rank of П is between zero and k, then your series are cointegrated and 

the number of cointegrating vectors equals the rank of П. 

 

Now we have only one case, when the matrix П is of full rank. 

11 12 11 21 11 11 12 12 11 21 12 22

21 22 12 22 21 11 22 12 21 21 22 22

           

           

     
     

     
Π  

This means that you can only create your matrix П as the product of two 2x2 matrices. In this case 

your series are stationary so they cannot be cointegrated by definition.   

Why? 
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Let us look at the VEC again: 
1

1

1

p

i i

i



 



     t t t tY δ ΠY Γ Y e  

The whole methodology is based on the assumption that your endogenous (dependent) variables are 

I(1). As such  tY and any lags of it are stationary. We know that the residual is also stationary (this is 

a dynamic model, so 1tΠY has to be stationary as well. If your y variables happen to be stationary 

without being cointegrated, then they had to be stationary already. 

If you matrix П is of full rank, your dependent variables are stationary and cannot be cointegrated. 

 

  10.c The Johansen test of cointegration 

 

The main objective is that after you estimate the matrix П, you determine its rank. In linear algebra 

courses you do this simply by some kind of elementary basis transformation so that you find out how 

many of the k rows of columns of the matrix are linearly independent. This would not be very useful 

now, so instead we test the rank of the kxk matrix П using the eigenvalue approach. 

 

What is the eigenvalue? Let us assume you have a kxk square matrix A and c is a kx1 vector. Now we 

say that c is the eigenvector of matrix A is there exist such a scalar λ that: 

Ac c  

the scalar λ is called the eigenvalue of A. 

Now, the main point here is, that A may have at most k eigenvalues. The number of non-zero 

eigenvalues equals the rank of matrix A. 

So, without knowing how to calculate the eigenvalue (if you are interested, just look it up, you will 

find it quite familiar after the first lecture), you can just use some software to calculate it (you have 

some of them online, just google it). 

Say you have a matrix like: 

1 0

0 1

 
  
 

A its eigenvalues are 1 and 1, so both of them are non-zero: this matrix has the rank of 

two. 

If you have a different matrix, like: 

2 3

2 / 3 1

 
  
 

A then the two eigenvalues are: 0 and 3, so the rank of the matrix is one. This means 

that one of them can be created as the linear combination of the other. And indeed, dividing row 1 

by 3 gives the second row. 

 

You have two tests. Both of them are based on an estimate of the eigenvalues of matrix П, denoted 

as λi, i=1…k. The eigenvalues are ordered from the largest (i=1) to the smallest (i=k). 

The trace test has the following statistics: 

( ) ln(1 )trace rr T    where r is the rank of the matrix П (number of cointegrating vectors) in the 

null-hypothesis. The null hypothesis is that r is different from zero. In this case ln(1 )i should 

have a negative value. The alternative hypothesis is that 0r  but then ln(1 ) 0r  . 
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So the trace test has the null-hypothesis that the rank of П is less than or equal to r. 

An alternative test is the maximum eigenvalue test. Here you have the null-hypothesis that the rank 

equals r, against the alternative that it is r+1. The test statistics is: 

 

max 1( , 1) ln(1 )rr r T       

 

Let us put this into use! 

I simulated two time series, y and x in a way that they are cointegrated. The first step is to have a 

proper VAR representation. Be careful, the test results may be very sensitive to your choice of the 

order of the VAR (an obvious weakness of this methodology) so you should always start with a 

standard VAR model! 

 
It seems that a VAR(2) is fine. Let us have a look at the residual diagnostics: 
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It seems all right (of course, I created the data in that way…), so we run a cointegration test: 

 

 
Pay good attention to this menu: you may have several different assumption regarding the nature of 

the cointegrating relationship (now I chose number 2, because I created the relationship, so I know 

that number 2 is correct). Beware: you need to give the lag order of the VEC at the right-hand side 

(lag intervals) which is one less than the order of the VAR. We had a VAR(2) so I give here 1 1, 

meaning that we use a VEC(1) model.  Now we have the output of the Johansen test. 
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It is possible that you obtain conflicting results from the two tests. In this case, since its small-sample 

properties are better, you should rather prefer the results from the maximum eigenvalue test. 

 

10.d. Real data examples 

 

Let us return to tablef5.1 that we used for the VAR/SVAR exercise. 

We have the basic model where we were interested in the relation between the log of real GDP and 

inflation rate. Let us look for evidence of a long-run relationship! 

As first step we estimate the best VAR(p) system we can. Last time we agreed on a VAR(4). 

Now we run a series of cointegration tests: 

This is the test output of the trace test: you can 

see that it clearly rejects the null-hypothesis  

that the rank is 0, while it cannot reject that the 

rank is 1. 

This is the test output of the max eigenvalue 

test: you can see that it clearly rejects the null-

hypothesis that the rank is 0 to the alternative 

that it is 1. If you have just two variables, the 

two tests are equivalent. 

These are the non-normalized elements of the 

beta and the alpha matrix under no assumption 

regarding the number of cointegrating vectors. 

These are the normalized elements of the beta 

and the alpha matrix under the assumption that 

you have one cointegrating vector. The Eviews 

will automatically normalize the coefficient of 

the first variable.  
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We tell the Eviews that we think in terms of a VEC(3) system. We do not know the exact form of the 

cointegrating vector however, so we ask the software to test a wide range of possibilities. Let us got 

through of these: 

1) means that your cointegrating vector looks 1ln inflt ty  , that is you force an assumption 

that with zero inflation you should have lny=0 (y=1) in the long-run, which is obviously false. 

2) 0 1ln inflt ty    , now you allow that with zero inflation, the GDP can be different than 

one. In this case you assume that the ECM equation looks like: 

 1 1 1 0 1 1 1ln ln infl ln inflt t t t ty y e            

3) In this case you allow for a constant in both part, so both in the cointegrating vector and 

outside of it.  

0 1ln inflt ty    and  1 1 1 1 0 1 1 1ln ln infl ln inflt t t t ty y e              

If you think further about this model, you will find that by having a constant in your equation 

for the change of a dependent variable, you actually introduce a factor of constant change in 

it. So you assume that lny has some deterministic trend.    

4) The same can be achieved by introducing a linear trend in the cointegrating vector while 

allowing for an intercept outside of it:  

0 1 2ln inflt ty t      1 1 1 1 0 1 1 2 1ln ln infl ln inflt t t t ty y t e                

The final result is the same: you will now have a deterministic trend in lny, but it will be 

because the long-run relationship is changing. 

5) Finally, You can add a linear trend in- and outside of the cointegrating vector:  

0 1 2ln inflt ty t      

 11 12 1 1 1 0 1 1 2 1ln ln infl ln inflt t t t ty t y t e                  

Since now you assume that the change of lny exhibits a linear trend, its level should have a 

quadratic trend. 

 

Of course, you can look at your data for a hint: 
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It seems that at least the log of real GDP seem to have a clear trend, but still, only looking at the 

graphs will not give you the definitive answer on which assumption is correct. 

When you have no idea which one is the correct one, you should test for all possibilities: 

 
Here we have several choices, but the information criteria seem to favor two options. Either that we 

have two non-stationary regressions that are not cointegrated (look for the stars in the Schwarz 

Information Criterion row with zero rank…) or that we have a single cointegrating vector and a linear 

trend in data (this is favored by the Akaike Information Criterion). 

Let us carry out the cointegration test with a single cointegrating vector under assumption no. 4. 
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What we find now is that the cointegrating vector is: 0ln 0.128 infl 0.008t ty t     the standard 

errors are much lower than the coefficients (respective t-stats would be 4.86 and 61.84 respectively) 

so we can be certain that the elements of the vector are significant at 1%.   

The adjustment coefficients tell us a story of asymmetrical adjustment: The coefficient for lny is 

insignificant, meaning that real GDP does not seem to adapt to the equilibrium relation. On the other 

hand, the rate of inflation has a significant coefficient that shows adjustment from part of the 

inflation. So if inflation has a permanent shock the equilibrium value of the log of real GDP will also 

rise. But the real GDP will not react by adjusting to the new level; instead it is rather the inflation rate 

that will adjust and go down again. 

The VEC system is estimated as follows:  
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Where you are going te get the following output: 

 

 

We can also test for the presence of cointegration in the four equation VAR(6) system that included 

the natural log of real GDP, CPI, M1 and the level of treasury bill rate. 

The cointegration test leads to the following: 
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If we again prefer the AIC, we come at the conclusion that there are two cointegrating vectors and 

some linear trend in the data. 

We can estimate the basic VEC(5) as follows: 

  
The estimates of the beta and alpha vectors are displayed as follows: 
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You can see that there are four restrictions already in the cointegrating vector β11=β22=1, that is lnY 

and lnM1 are normalized to one respectively. The rest of the restrictions are introduced so that the 

two vectors are surely independent of each other β12=β21=0, but this is not necessarily true. The 

alpha coefficients are also reported, and some of them are seemingly not significant: It seems, for 

example, that the log CPI does not adjust to its respective cointegrating relation. 

What we can do is to change the restrictions. Of course there is some limitation here:  in order to 

have standard errors and a specification test you need to keep the cointegrating vector identified.  

You can introduce restrictions by reestiamting the VEC: 
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Here you can assign values to the elements of both the cointegrating vectors and the adjustment 

vectors. Now, for example, I introduced only two restrictions (obviously, this will render our vectors 

unidentified). I choose now, that I normalize the elements of the two cointegrating vectors to minus 

one for the lnY and the lnM. by using minus one instead of positive one, we gain only one thing: you 

need not to multiply the coefficient by minus one to have their right sign. 

 

   
We can introduce additional restrictions based on theory: we know for example, that in the long-run, 

if money supply increases by one percentage, CPI should also go up by one percentage. This would 

then introduce β23=1 as additional restriction. We can also argue that changes in prices should not 

have any long-run effect on the log of real GDP that leaves us with a second restriction: β13=0.  
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You can also introduce restrictions regarding the adjustment parameters: 

as we observed before, the log of CPI does not seem to adjust to the equilibrium value of log M1, so 

it can be set to zero: α32=0, additionally we find the same for treasury bill rate and the equilibrium 

value of log real GDP: α41=0. 
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The specification test (for which you need to overidentify the cointegrating vector) does not reject 

the null hypothesis that this restricted form is at least as good as the basic case. 

You can of course go further and test other theoretical restrictions. 

 

 


