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Lecture 10 Vector Error Correction (VEC): Johansen technique of cointegration testing, empirical
applications.

10.a Multiple cointegrating vectors

With the single-equation time-series techniques we could only estimate a single cointegrating vector.
Let us take an example: we have three I(1) variables, x;, y;, and z, that are thought to be cointegrated
of order one. If you have a single cointegrating vector (where the coefficient of y is normalized to

one: B=(L~fp,~B.~F,)

Then you can write the equilibrium value of y, as follows:

Vo =5+ BX + B,

and the deviation from it as:

u =Yy, — yt

Now the error-correction model is:

Ay, =0, +0,AX +6,A7+ U, , +€,, here we expect that a;, is negative and is between 0 and -4,
so that you have a return to the equilibrium value of y. (Now the adjustment coefficient is denoted
by alpha, and the short-run coefficients are denoted by theta; this is different than in the lecture
notes no. 6, where we used gamma for the adjustment coefficients and alpha’s for the immediate
effects, but the current one seems the standard (most common) notation for a VEC.)

You could actually rewrite this equation with the change of any other cointegrated variables at the
left-hand side:

AX, = 0,y + 0,,AY, +0,,AZ + a,U, ; +€,,, this also makes sense, but since u; is still the deviation of y,
form its equilibrium value and not a deviation of x; from its own equilibrium value, a,, does not have
to be negative. Actually what this coefficient is going to show you is, how x; reacts if y, deviates from
its equilibrium: if this relationship is symmetrical in the sense that both x; and z; are going to adapt,
you expect that a,. is going to be different from zero. Let us assume that B, is a positive number! In
this case, if u; gets positive (y; is above its equilibrium), x, may also react to this by an increase an so
removing some of the deviation. In this case you should obtain a positive value for a,..

Now, let us see substitute the cointegrating vector into the ECM:

Ay, = (010 —aof ) +OMX +O,AZ + oY~ ffiX o + 6y
AX, = (‘920 -, [ ) + 0,8y, +0,A7 + 0, Y, — 0P % — 0,57 +€,
Az, = (O — 3y ) + Oy A, + O AX + Yy — 4 BX — 7, + €y

Believe or not, we are already quite close to a VEC with a single cointegrating vector. | know that it is
not a very popular suggestion but let us rewrite the above system of equations into matrix form:



1 -6, -06,)(4y, O — 13y o Yia €
_‘921 1 _‘922 AXt = ‘920 - azﬂo + Q, (1 _ﬁ1 _ﬂz ) X |t ez,t
-0, -0, 1 Az Oz — 35 24 Ziy €t

or
AAY, =d+a'Y, , +e, very often the product ap’ is denoted by II.

Now we are going to look at the option when you have two cointegrating vectors:

1 -6, -0;)(4y, & oy Oy 1 -8, -p Yia €
=0, 1 Oy || A |=| 6, [+ 2y ay (1 _ﬂlz _ﬂm] X |+ €
-0, -0, 1 Az S Q3 Ay * “ Ziy €t

In standard form it would look:

AY, =6, +O,A% + 007, + 0y (Vg = BioXs = BiaZia) + 0y (You = BroXer = BasZin) + 84,

AX, =8, + Oy AY, + 0,7, + 01, (Yoy = BrioXea = PraZeia) + Aop (Yoo = BoaXes = BaaZis) + €5,

Az, = 63+ Oy A, + O A% + i3 (Vg = BioXes — BiaZin) + Qs (Yes = BroXes — PosZis) + 85,

Of course, by a simple equation by equation estimation you could never separate the two vectors, so

you could not estimate them. What you would estimate for the first equation is:

AY, =0, + 0,/ + 0,7, + (0‘11 + az1) Yia— (allﬁlZ +0y Py ) X1~ (anﬂls + 0‘21ﬂ23) Z T8,

and so on for the rest. As you can see, even if there were multiple cointegrating vectors, you could
only estimate some kind of combination of them by a single equation method. So instead we prefer a
vector approach, estimating a whole system and estimating matrix I from that.

But first of all: what does it mean if you have multiple cointegrating vectors? When you have only a
single one, you interpreted the existence of the cointegration by assuming that there was some kind
of equilibrium relationship among your variables (a kind of common trend or co-movement) that did
not allow them to wander off from this path indefinitely. Now you only need to assume that if you
have k endogenous variables, you may have at most k-1 number of equilibrium relationships that
exist and operate simultaneously. Let us take an example: the long-run movement of exchange rates
can be explained by two mutually not-excluding theories: purchasing power parity (PPP) and
uncovered interest rate parity (UIP).

PPP is based on the law of one price, that the purchasing power of a currency should be the same in
all countries, i.e. spot exchange rates should adjust so, that the same good costs the same

everywhere. That is:P =S,P"—InS, =InP, —InP", where P.and P are the price of the same

good at home and abroad respectively, while S, is the spot exchange rate expressed as domestic
currency per one unit of foreign currency. This is clearly a mechanism that can govern long-run
movement of foreign exchange rates.

The UIP is about investment decisions. Let us assume that you can invest 100S in dollar in the USA at
interest rate of 5%, or you can invest the same amount of money in euro at interest rate 4% but first
you need to convert your money to euro at the current exchange rate of 1.2 $/€. So after the first
year you either have 5$ or 0.04*100/1.2=3.33€. Which one is the better? It depends on what
exchange rate we expect at the end of the year? If it is under 5/3.33=1.5 then it is better to stay with
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the in dollar denominated investment. If you expect the dollar depreciates more, and it gets above
1.5 $/€ then you should rather go for the investment in euro. Obviously the equilibrium is when it
does not matter in which currency you have your investments because one you bring it to the same
currency, they have equal payoff.

.. ES "
(1+It):ts—”l(l+lt)where | and i* are the nominal interest rates on your investments in
t

domestic and foreign currency respectively, and E.S,, is the expectation in t about the spot
exchange rate in t+1. In order that the equality holds, if foreign interest rates rise with respect to the
domestic ones, you expect that S is going to fall, that is, the domestic currency appreciates/foreign
currency depreciates.

So: E,(AInS,,;) =i, —i; , where we made us to the approximation: In(1+X) ~ X

These are two mechanisms that may both exist and affect the change in exchange rates. This can
finally lead to two cointegrating vectors. Of course this is just a single example of many possibilities.

10.b From VAR to VEC

In the previous section we approached cointegration with the possibility of multiple cointegrating
vectors departing from an Engle-Granger (single equation) method. Let us arrive at the same, but this
time departing from a VAR!

Say, we have a VAR(2):

Y, =0+0Y,, +0.,Y, , +e,

This can be rewritten in a Vector Error-Correction (VEC) form as follows:

Y, =Y =AY, =8+(0,+0,-1)Y_, +O,AY, , +e, =5+11Y,_ +AY,, +e,
So from a VAR(2) you obtained a VEC(1) model:

If you find that a VAR(1) representation fits your data the best and wish to estimate a VEC(0) as
follows:

Y, =0+0,Y,, +e,
Y, =Y =AY, =8+(0,-1)Y, +e, =d+I1Y,, +e,
Generally, any VAR(p) system can be rewritten as VEC(p-1).
p
Y, =8+) OY, +e,

i-1
P p-1 P p-1
AY, =8+ D 0 -1 Y+ | =D 0, |AY,  +e, =d+TIY,_ + D TAY, +e,
i=1 i1\ j=itl i=1
Let us assume that we have a two-variate VAR(1) system:
(ylt]:{é‘lj+(ell elZJ(ylt—l]_"_(eltJ
Yo 0, O O )\ Yo €2

The matrix M from the VEC(0) representation is going to be:




= [911 -1 ‘912 J
921 922 -1

Obviously, if 8, =1,6,, =16, =6, =0the above is a zero matrix, and this can be written as

follows:

e 1)
Yo 0, 0 1)\ Yo €t

Yie =0+ Yy g teand Yy =0, + Yy 1 8y

That is, both y; and y, are random walk processes and independent of each other (no cointegration).
In this case the 2x2 matrix I is a zero matrix so its rank is by definition 0.

So, generally, when matrix N has zero rank, we have non-stationary variables that are not
cointegrated.

What if the rank of the matrix M is less than k but higher than zero, so it has a reduced rank?
In this particular case it means that, if you have:

= [911 -1 ‘912 J
921 922 -1

then the trace should be zero (the matrix is singular):
(911 _1)(922 _1)_021012 =0
This is possible if ¢(6,—1)=6,andcl, =6,,—1, so the two rows of columns are linearly

dependent.

ay,

a a
Since M =ap' II :( J(ﬂn Boy) :[ uh 1l'Bﬂjobviously the two rows (columns) of the

AP Ol

matrix I are dependent. So you can create the 2x2 matrix as a product of a 2x1 and a 1x2 vectors.
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This is cointegration, and you have a single cointegrating vector. Of course it is possible that you
normalize the element of the cointegrating vector for one of the variables to one. If you choose, say,
B]_l:l, then:

@, Oy &

H:(allj[l &J: B
Oy B a  ay P

B

We can conclude that if the rank of N is between zero and k, then your series are cointegrated and
the number of cointegrating vectors equals the rank of .

Now we have only one case, when the matrix M is of full rank.

m- (all Q) j[ﬂn 1321] _ [0‘11:811 ta,fy, S+l j
Ay A \ By P AP+ 0y ooy + 0By

This means that you can only create your matrix M as the product of two 2x2 matrices. In this case
your series are stationary so they cannot be cointegrated by definition.
Why?



Let us look at the VEC again:
p-1

AY, =8+MY,_ + ) TAY, +e,
i-1
The whole methodology is based on the assumption that your endogenous (dependent) variables are

I(1). As such AY, and any lags of it are stationary. We know that the residual is also stationary (this is

a dynamic model, so IIY, , has to be stationary as well. If your y variables happen to be stationary

without being cointegrated, then they had to be stationary already.
If you matrix M is of full rank, your dependent variables are stationary and cannot be cointegrated.

10.c The Johansen test of cointegration

The main objective is that after you estimate the matrix 1, you determine its rank. In linear algebra
courses you do this simply by some kind of elementary basis transformation so that you find out how
many of the k rows of columns of the matrix are linearly independent. This would not be very useful
now, so instead we test the rank of the kxk matrix M using the eigenvalue approach.

What is the eigenvalue? Let us assume you have a kxk square matrix A and c is a kx1 vector. Now we
say that c is the eigenvector of matrix A is there exist such a scalar A that:

Ac=1c

the scalar A is called the eigenvalue of A.

Now, the main point here is, that A may have at most k eigenvalues. The number of non-zero
eigenvalues equals the rank of matrix A.

So, without knowing how to calculate the eigenvalue (if you are interested, just look it up, you will
find it quite familiar after the first lecture), you can just use some software to calculate it (you have
some of them online, just google it).

Say you have a matrix like:

0

10
A =[ J its eigenvalues are 1 and 1, so both of them are non-zero: this matrix has the rank of

two.
If you have a different matrix, like:

A :[2/3 1jthen the two eigenvalues are: 0 and 3, so the rank of the matrix is one. This means

that one of them can be created as the linear combination of the other. And indeed, dividing row 1
by 3 gives the second row.

You have two tests. Both of them are based on an estimate of the eigenvalues of matrix M, denoted
as A;, i=1...k. The eigenvalues are ordered from the largest (i=1) to the smallest (i=k).
The trace test has the following statistics:

Ayace (1) ==T In(1— A, ) where r is the rank of the matrix N (number of cointegrating vectors) in the
null-hypothesis. The null hypothesis is that A is different from zero. In this case In(l—ﬁ,,) should

have a negative value. The alternative hypothesis is that 4. =0but then In(1—A4.)=0.
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So the trace test has the null-hypothesis that the rank of M is less than or equal to r.

An alternative test is the maximum eigenvalue test. Here you have the null-hypothesis that the rank

equals r, against the alternative that it is r+1. The test statistics is:

A (1,1 +) =-T In(1-4,,,)

Let us put this into use!

| simulated two time series, y and x in a way that they are cointegrated. The first step is to have a

proper VAR representation. Be careful, the test results may be very sensitive to your choice of the

order of the VAR (an obvious weakness of this methodology) so you should always start with a

standard VAR model!

WAR Lag Order Selection Criteria
Endogenous variahles: ' X
Exngenous wariables: G

Date: 030812 Time: 19:27
Sample: 2100

Included ohservations: 92

Lag LogL LR FPE AlC =183 Ha

0 -252.8740 A 0.873704 5.540738 5.595560 5.562865
1 -191.1067 1185082 0.248331 4.284929 4.449393% 4351308
2 -184.9513 1164182 0.237528% 4238071 4512179 4348704~
3 -184.0929 1.586105 0.254413 4 306368 4630118 4 461262
4 -182.9648 2.035608 0.270983 4368799 4862192 4 567937
] -178.2620 3.280887 0.267153 43535621 4956558 4596912
4 -171.0800 12317107 0.2449728 4 284565 4007244 4472208
7 -168.4569 4407547 0.257792 43142 5136603 4 646177
8 -166.5506 3108118 0.270531 4359796 5281761 4735945

*indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AlC: Akaike information criterion

SC: Schwarz information criterion

H@: Hannan-Quinn information criterion

It seems that a VAR(2) is fine. Let us have a look at the residual diagnostics:



WAR Residual Mormality Tests

Orthagonalization: Cholesky (Lutkepohl)

Mull Hypothesis: residuals are multivariate norral
Date: 0370812 Time: 19:28

Sample: 2100

Included observations: 88

WAR Residual Serial Correlation LM T..

Null Hypothesis: no setial correlation ... Component  Skewness Chi-sg df Prab.
g:ﬁib?ggﬂg Tirme: 19:27 1 0261818 1.036730 1 03028
Included ohservations: 88 2 0.284835 1.326069 1 0.2495
Joint 23617499 2 0.3070
Lags LM-Stat Froh
1 4422875 0.3518 Carmponent Kurtosis Chi-sg df Prab
2 9220740 0.0558
3 1.865077 0.2151 1 2.B92560 0.3850853 1 0.5344
4 2834276 0.5859 2 36396E7 1670400 1 01861
q 5.482298 0.2413 N
B 1058075 003G Joint 2 066853 2 0.3576
7 3.730827 0.4436
8 4921002 0.2955
a 1320849 P Cornponent  Jargue-Bera df Prob
10 2427246 0.6577 1 1471684 2 049172
n 11.28088 0.0236 2 2.906969 2 0.2235
12 0534112 0.9701
Joint 4.418653 4 03523

Frobs from chi-soquare with 4 df.

WAR Residual Heteroskedasticity Tests: Mo Cross Terms {only levels and sguares)
Date: 03/0812 Time: 19:28

Sample: 2100

Included ohservations: 98

Jaint test:
Chi-gg df Prob.
18.12339 24 07870

Individual compaonents

Dependent  R-souared Fi{3.89) Prob, Chi-sui#) Prob.

res1*rest 0.067014 0799081 0.6049 B.567379 0.5839
res2%res? 0.033204 0382075 0.9278 3.253843 09174
res2*rest 0.071852 0862528 0.5511 7.051315 0.5311

It seems all right (of course, | created the data in that way...), so we run a cointegration test:

Johansen Cointegration Test x

Coinkegration Test Specification | YEC Restrictions

Deterministic trend assumption of test Exoq variables™®
Assume no dekerministic trend in data:

(1) Mointercept or trend in CE or tesk VAR

(3)2) Intercept {no trend) in CE - no intercept in VAR

Allow For linear deterministic trend in data: Laoliispial:

()3) Intercept ino trend) in CE and test WAR 11

()4} Intercept and trend in E - no inkercept in VAR
Lag spec for differenced

Allow for quadratic deterministic trend in data: endogenaous
(2)5) Intercept and trend in ©E - intercept in WAR
SUmmary: Critical Yalues
(6) Summarize all 5 sets of assumptions (&) MHM

Size | 0.05

* Critical walues may not be valid with exogenous
variables; do not include C or Trend. O Osterwald-Lenum

[ [o]'8 ” Mégse ]

Pay good attention to this menu: you may have several different assumption regarding the nature of
the cointegrating relationship (now | chose number 2, because | created the relationship, so | know
that number 2 is correct). Beware: you need to give the lag order of the VEC at the right-hand side
(lag intervals) which is one less than the order of the VAR. We had a VAR(2) so | give here 1 1,
meaning that we use a VEC(1) model. Now we have the output of the Johansen test.



Date: 030812 Time: 18:32

Sample {adjusted): 3100

Included oh=ervations: 98 after adjustments

Trend agsumption: Mo deterministic trend {restricted constant)
Series: v X

Lags interval {in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
Mo, of CE(E) Eigenvalue Statistic Critical Value Frob.*
Mone ™ 0.383746 53.02539 2026184 0.0000
Atmast1 0.055386 5.583948 9.164546 0.2254 <«
Trace testindicates 1 cointegrating egqnis) at the 0.05 level
*denotes rejection of the hypothesis atthe 0.05 level
Mackinnon-Haug-Michelis (1939) p-values
Unrestricted Cointegration Rank Test (Maximurm Eigenvalue)
Hypothesized Max-Eigen 0.05
Mo, of CE(s) Eigervalue Statistic Critical Walue FProh>
Mone * 0.383746 47.44145 16.89210 0.0000 4/
Atmostl 0.055386 5.583948 9164546 0.2254

Max-eigenvalue testindicates 1 cointegrating eqn(s) atthe 0.05 level

*denotes rejection of the hypothesis atthe 0.05 level
MacKinnon-Haug-Michelis {1999) p-values

Unrestricted Cointegrating Coeficients (normalized by b=511*b=l)

Y X c
-0.063173 -2.7245149 3.206938
0.408486 -0.701224 -2.1664149

Unrestricted Adjustrment Coeflicients (alphay:

Do 0.201534 -0.218415
D) 0.363488 0.035421
1 Cointegrating Equation{s): Log likelihood -203.26749

Marmalized cointegrating cosfficients (standard error in parentheses)

N H
1.000000 4312804 -50.7B455
[5.77040) [6.08718)
Adjustment coefficients (standard error in parentheses)
D -0.013731
(0.00624)
DG -0.022963
[0.00314)

\

This is the test output of the trace test: you can
see that it clearly rejects the null-hypothesis
that the rank is 0, while it cannot reject that the
rank is 1.

This is the test output of the max eigenvalue
test: you can see that it clearly rejects the null-
hypothesis that the rank is O to the alternative
that it is 1. If you have just two variables, the
two tests are equivalent.

These are the non-normalized elements of the
beta and the alpha matrix under no assumption
regarding the number of cointegrating vectors.

These are the normalized elements of the beta
and the alpha matrix under the assumption that
you have one cointegrating vector. The Eviews
will automatically normalize the coefficient of
the first variable.

It is possible that you obtain conflicting results from the two tests. In this case, since its small-sample
properties are better, you should rather prefer the results from the maximum eigenvalue test.

10.d. Real data examples

Let us return to tablef5.1 that we used for the VAR/SVAR exercise.
We have the basic model where we were interested in the relation between the log of real GDP and

inflation rate. Let us look for evidence of a long-run relationship!
As first step we estimate the best VAR(p) system we can. Last time we agreed on a VAR(4).
Now we run a series of cointegration tests:



Johansen Cointegration Test x

Cointegration Test Specification | YEC Restrictions

Deterministic trend assumption of test Exng vatiablas®

Assume no dekerministic trend in data:
(13 Mo intercept or trend in CE or best VAR
(2) Intercept (no trend) in CE - na intercept in WaR

Allow For linear deberministic brend in data:

Lag intervals

(3 Intercept {no trend) in CE and test VAR 1B
(O4) Intercept and trend in CE - no intercept in VAR

Lag spec for differenced

Allowy For quadratic deterministic trend in data; endogenous
(5) Intercept and trend in CE - intercept in WAR
Summary s Critical Walues
(®)6) Summarize all 5 sebs of assumpkions (&) MHM

Size | 0.05

* Critical walues may not be valid with exogenous
variables; do not include C or Trend,

() Osterwald-Lenum

[ OF H Mégse ]

We tell the Eviews that we think in terms of a VEC(3) system. We do not know the exact form of the

cointegrating vector however, so we ask the software to test a wide range of possibilities. Let us got

through of these:

1)

2)

means that your cointegrating vector looks Iny, = Zinfl,, that is you force an assumption
that with zero inflation you should have Iny=0 (y=1) in the long-run, which is obviously false.
Iny, = 4, + Binfl,, now you allow that with zero inflation, the GDP can be different than

one. In this case you assume that the ECM equation looks like:
Alny, =pAIninfl, + o, (Iny,, — £, - Binfl ;) +e,

In this case you allow for a constant in both part, so both in the cointegrating vector and
outside of it.

Iny, =, + Binfland Alny, =6, + p,Alninfl, + e (Iny,_, — B, - Binfl_, ) +e,

If you think further about this model, you will find that by having a constant in your equation
for the change of a dependent variable, you actually introduce a factor of constant change in
it. So you assume that Iny has some deterministic trend.

The same can be achieved by introducing a linear trend in the cointegrating vector while
allowing for an intercept outside of it:

Iny, = 8, + Binfl, + Bt Alny, =6, +yAIninfl, + o, (Iny,, - B, - Binfl_, — Bt)+e,
The final result is the same: you will now have a deterministic trend in Iny, but it will be

because the long-run relationship is changing.
Finally, You can add a linear trend in- and outside of the cointegrating vector:

Iny, =4, + ginfl, + St

Alny, =6, + S t+pAlIninfl + o, (Iny,_, — B, - Binfl_, — B,t)+e,

Since now you assume that the change of Iny exhibits a linear trend, its level should have a
guadratic trend.

Of course, you can look at your data for a hint:
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It seems that at least the log of real GDP seem to have a clear trend, but still, only looking at the
graphs will not give you the definitive answer on which assumption is correct.

When you have no idea which one is the correct one, you should test for all possibilities:

Date: 0309112 Time: 11:48
Sample: 195021 200004
Included observations: 200
Series: LMY IMFL
Lagsinterval: 110 3

Selected (0.05 level® Mumber of Cointegrating Relations by Model

Data Trend: Mone Mone Linear Linear Quadratic
TestType Molntercept Intercept Intercept Intercept Intercept
Mo Trend Mo Trend Mo Trend Trend Trend
Trace 2 2 1] 1 2
Max-Eig 2 2 0 1 2

*Critical values hased on Mackinnon-Haug-Michelis (1995)

Information Criteria by Rank and Model

Data Trend: Mone Mone Linear Linear Quadratic
Rank ar Mo Intercept  Intercept Intercept Intercept Intercept
Mo.of CEs Mo Trend Mo Trend Mo Trend Trend Trend
Log Likelihood by Rank {rows) and Model {columns)
0 1956982 1956982 2130787 213.0787 21332495
1 2143277 214.9559 219.2261 224.2201 224.3000
2 218.6317 219.6976 219.6976 2251938 2291938

Akaike Information Criteria by Rank {rows) and Model {columns)

0 -1.836882  -1.836982  -1.880787  -1.990787  -1.973285

1 -1.983277 -1.879559 -2.012281 -2.052201*  -2.043000

2 -1.886317  -1.976976  -1.976976  -2.051938  -2.051838
Schwarz Criteria by Rank (rows) and Model {columns)

0 -1.635083 -1.639083  -1.759905%  -1.759905% -1.709430

1 -1.719412  -1.699202  -1.718412  -1.738861  -1.713168

2 -1.656485 -1.614161 -1.614161 -1.656140 -1.656140

Here we have several choices, but the information criteria seem to favor two options. Either that we
have two non-stationary regressions that are not cointegrated (look for the stars in the Schwarz
Information Criterion row with zero rank...) or that we have a single cointegrating vector and a linear
trend in data (this is favored by the Akaike Information Criterion).

Let us carry out the cointegration test with a single cointegrating vector under assumption no. 4.
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Date: 03/09/12 Time: 16:56

Sample (adjusted): 1951Q1 200024

Included ohservations: 200 after adjustments

Trend assumption: Linear deterministic trend (restricted)
Series: LMY IMFL

Lags interval {in first differences): 1to 3

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.08
Mo. of CE(s) Eigenvalue Statistic Critical Walue Frob.*
MNone * 0.105432 32.23023 2587211 0.0070
Atmost 1 0.048520 59947318 12517438 0.1286
Trace testindicates 1 cointegrating egnis) atthe 0.04 level
*denotes rejection of the hypothesis atthe 0.05 level
mackinnon-Haug-michelis {199%9) p-values
Unrestricted Cointegration Rank Test (Maximum Eigenvalug)
Hypothesized Max-Eigen 0.0s
Ma. of CE{s) Eigervalue Statistic Critical Value  Prob™
MNone * 0105432 2228292 19.38704
Atmost1 0.048520 9.847318 12517498

Max-eigenvalue testindicates 1 cointegrating egnis) atthe 0.04 level
* denotes rejection of the hypothesis atthe 0.05 level
“Mackinnon-Haug-Michelis {19949) p-values

Unrestricted Cointegrating Coefficients (normalized by b*511%h=I):

LMY IMNFL @TREMND(B0GZ)
-29.25099 0.375714 0.235185
1374678 0.227999 -0.112569

Unrestricted Adjustment Coefficients (alpha):

DiLMY) -3.83E-05 -0.001940
DiIMFLy -0.724506 0.024566
1 Cointegrating Equation{s): Log likelihood 224.22M
Mormalized cointegrating coefficients (standard error in parentheses)
LMY INFL @TREMND(50G2)
1.000000 -0.012844 -0.008040
(0.00264) {0.00013)
Adjustment coefficients {standard error in parentheses)
DiLMY) n.oo121
(0.01908)
DiINFL) 21.19253
(4.46126)

What we find now is that the cointegrating vector is: In'y, = £ +0.128-infl, +0.008-t the standard

errors are much lower than the coefficients (respective t-stats would be 4.86 and 61.84 respectively)
so we can be certain that the elements of the vector are significant at 1%.

The adjustment coefficients tell us a story of asymmetrical adjustment: The coefficient for Iny is
insignificant, meaning that real GDP does not seem to adapt to the equilibrium relation. On the other
hand, the rate of inflation has a significant coefficient that shows adjustment from part of the
inflation. So if inflation has a permanent shock the equilibrium value of the log of real GDP will also
rise. But the real GDP will not react by adjusting to the new level; instead it is rather the inflation rate

that will adjust and go down again.
The VEC system is estimated as follows:
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VAR Specification

Basics | Coinkegration || VEC Restrictions
WAR Twpe Erndogenous Yariables

() Unrestricked VAR Iy infl

G} Veckar Error Correckion

Estimation Sample Lag Inktervals for O Endogenous
1950q1 200094 15

Exogenous Variables

Da MOT include C or Trend in YEC's

Ik ] [ Méqse

Where you are going te get the following output:

We can also test for the presence of cointegration in the four equation VAR(6) system that included
the natural log of real GDP, CPI, M1 and the level of treasury bill rate.
The cointegration test leads to the following:
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Date: 03711012 Time: 13:49
Sample: 195001 200004
Included observations: 198

Seties: LNY LNM LNCPI TBILRATE
Lags interval: 110 5

Selected (0.1 level®) Mumber of Cointegrating Relations by Model

Drata Trend: MNone MNone Linear Linear Quadratic
TestType Mo ntercept Intercept Intercept Intercept Intercept
Mo Trend Mo Trend Mo Trend Trend Trend
Trace 3 4 2 1 2
Max-Eig 3 4 2 0 0

*Critical values hased on Mackinnon-Haug-Michelis (1959)

Information Criteria by Rank and Madel

Drata Trend: MNone MNone Linear Linear Quadratic
Rank aor Mo Intercept Intercept Intercept Intercept Intercept
Mo of CEs Mo Trend Mo Trend Mo Trend Trend Trend

Log Likelihood by Rank {rows) and Model {calumns)

0 1968.537 1968.537 1986.318 1986.318 1988.598
1 1990.694 1992.401 1999.924 2000.771 2002.504
2 1999.830 2002.564 2009.430 2011.238 2012507
3 2004.879 2009.832 2014.602 2016.420 2016.885
4 2005.696 2014.651 2014.651 2020467 2020467
Akaike Information Criteria by Rank {rows) and Model {(columns)
0 -19.07613  -19.07613  -18.21533  -19.21533  -19.19796
1 -19.21913  -19.22627 1927196 -19.27042  -19.25762
2 -19.23061  -19.23802  -19.28718% -19.28524 -19.27785
3 -19.20080 -19.22053  -19.25860 -19.24666  -19.24127
4 -19.12824 1917830 1847830 -19.19663  -19.19663
Schwarz Criteria by Rank {rows) and Model {columns)
0 S17.74753 0 1774753 1782031 -17.82031% -17.73651
1 -17.75768  -17.74821  -17.74408 1772593 -17.66331
2 -17.63630  -17.61050  -17.62643  -17.59128  -17.55067
3 -17.47363 -17.44354 1746500 -17.40324 -17.38124
4 -17.26821  -17.25184 -17.25184 -17.20374 -17.20374

If we again prefer the AIC, we come at the conclusion that there are two cointegrating vectors and
some linear trend in the data.
We can estimate the basic VEC(5) as follows:

N _ x
VAR Specification x VAR Specification

N i Cointegration ik
Basics | Cointegration | WEC Restrictions fasics © MEGRestictions

Rank:
WAR Type Endogencus variables Mumber of cointegrating z

(O Unrestricted AR Iry Inen Incpi tbilrate

. . Deterministic Trend Specification
'G,' Weckor Error Correction
Mo trend in data

(1) Mointercept or brend in CE ar VAR

Estimation Sample Lag Intervals for Df Endogenaous J: (\'2) s e (et 00 € = 0 (e Do R

1950g1 200094 15
4 q Linear trend in data

(3131 Intercept (o trend) in CE and AR

Exogenous Yariables
()4) Intercept and trend in CE - no trend in YaR

Quadratic trend in data
()5) Intercept and trend in CE- linear trend in YAR.

Do MOT include C or Trend in YEC's

[ oK ][ Mégse ] [ 0K ][ Mégse

The estimates of the beta and alpha vectors are displayed as follows:
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Yactor Error Carrection Estimates

Date: 03M0M2 Time: 13:54

Sample (adjusted): 195103 200004
Included ohservations: 193 after adjustments
Standard errars in () & t-statistics in []

Cointegrating Eq: CointEg1 CointEg2
LMY(-1) 1.000000 0.0o0ooo
LMME1) 0.000o00 1.000000
LMCPI-1) -0.730356 -1.274770
{0.05350% (004288
[-13.6514] F29.6800]
TBILRATE-1) 0.064127 n.0saros
(0.01859) (0.01454%
[3.44289] [5.93753]
C -4 867703 0.353406
Error Correction: DL DL M) D{LMCPL  D{TBRILRATE)
CointEg1 0.023736 0.026058 0010164 0.612010
(000915, (0.00854% (0.00513 (N.63263)
[2.60045] [3.049649] [1.88673] [D.86741]
CointEg? -0.035076 -0.0274934 -0.003 36k -1.961488
{0.01183) (0.01118) (0.00FGES) (0.82639)
[-2.93520] 280612 [0.50421] [2.37644]
DLMYE=1 0184531 -0.108054 -0.014581 13.88851
{0.08384) (0.07833 (0.04690) (578847
[2.20642] [1.341349) [0.31544] [2.39520]
DELMYE-200 -0.017286 -0.0301549 -0.079734 1311621
(n.osaa (0.07768) (0.04650) (5.74905)
-0 N7 a8 -0 =RREm -1 71480 [ 2814R]

You can see that there are four restrictions already in the cointegrating vector B1;=B,,=1, that is InY
and InM1 are normalized to one respectively. The rest of the restrictions are introduced so that the
two vectors are surely independent of each other B,,=B,,=0, but this is not necessarily true. The
alpha coefficients are also reported, and some of them are seemingly not significant: It seems, for
example, that the log CPI does not adjust to its respective cointegrating relation.

What we can do is to change the restrictions. Of course there is some limitation here: in order to
have standard errors and a specification test you need to keep the cointegrating vector identified.

You can introduce restrictions by reestiamting the VEC:

14



WAR Specification X

Basics | Coinkegration | YEC Restrickions

Restrictions may be placed on the coefficients Blr, k) of the r-th A
cointegrating relation;

Bi(r, 1LY + B(r,2)*LNM + Bfr, 37*LNCPT +

Bir,41*TEILRATE
L
WEC Coefficient Restrictions Optimization
Impose Restrictions Max Ikerations:
Enter restrickion: (Example; B(1,1)=1, A(Z,1)=0) =b0
B(1,1}=-1, B(Z,2}=-1]
Convergence:

0.0001

[ K H Mégse ]

Here you can assign values to the elements of both the cointegrating vectors and the adjustment
vectors. Now, for example, | introduced only two restrictions (obviously, this will render our vectors
unidentified). | choose now, that | normalize the elements of the two cointegrating vectors to minus
one for the InY and the InM. by using minus one instead of positive one, we gain only one thing: you
need not to multiply the coefficient by minus one to have their right sign.

Wector Error Correction Estirmates

Date: 03711012 Time: 14:05

Sample adjusted): 1951Q3 200004
Included observations: 198 after adjustments
Standard errors in () & tstatistics in []

Cointegration Restrictions:
B, 1)=-1, B2, 21=-1
Carmvergence achieved after 1 iterations.
Mot all cointegrating wectors are identified
Restrictions are not binding (LR test not available)

Cointegrating Eq: CointEg1 CointEn2
LNYE-1) -1.000000  0.608714
LNM-1) 0356709 -1.000000
LNCPIC1) 0276554 0830462
TBILRATE(-1) 0032575 -0049604
c 4993413 -332131
Errar Carrection: DILNY) DLIM) DILNCFl)  D(TBILRATE)

CointEg1 0003064 -0011523  -0.010360  0.745654

(0.00548) (000517 (00030B)  (0.37875)

[055953]  [2.25249]  [-3.38194]  [1.88872

CoinEy2 0033966 0023840 -0000319 2226724

071y (0.01084)  (00DBSS)  (0.80962)

[280335]  [218011]  [0.04874]  [2.75035

We can introduce additional restrictions based on theory: we know for example, that in the long-run,
if money supply increases by one percentage, CPl should also go up by one percentage. This would
then introduce B,3=1 as additional restriction. We can also argue that changes in prices should not
have any long-run effect on the log of real GDP that leaves us with a second restriction: B,3=0.
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Vector Error Correction Estimates

Date: 031012 Time: 14:09

Sample (adjusted): 195123 2000024
Included ohservations: 1938 after adjustments
Standard errors in () &fstatistics in [

Cointegration Restrictions:

Bi1,1)=-1, B{2,2%=-1, B{1,3)=0, B(2,3)=1
Convergence achieved after 1 iterations.
Festrictions identify all cointearating vectors
Restrictions are not binding (LR test not available)

Cointegrating Eq: CointEgl CointEg2
LAY -1) -1.000000 0377583
(0.04043)
[9.33908]
LMRAE-1) 0472483 -1.000000
(0.02843)
[20.1378]
LMCPI-1) 0.0000o00 1.000000
THILRATE-1) -0.013346 -0.0644490
(0.01176) (0.00966)
F1.13522 [6.67EA0]
C 5.070022 -2.191366
Errar Correction: LMY DL b DILMCPD  D{TBILRATE)
CointEg1 -0.013449 -0.019786 -0.011347 0164082
(0.00708) (0.006GT) (0.00396) (0.48937)
[F1.90074] [2.99350] [-2.86691] [0.33529]
CointEg2 0027377 0016611 -0.003130 2.055423
(0.00974) (0.00914) (0.00547) (NETERT)
[2.79754] [1.81710) Foa7ien [3.03683)
DL =110 0184581 -010480845 -0.0144981 13.888481

You can also introduce restrictions regarding the adjustment parameters:

as we observed before, the log of CPI does not seem to adjust to the equilibrium value of log M1, so
it can be set to zero: a3,=0, additionally we find the same for treasury bill rate and the equilibrium
value of log real GDP: a4,=0.
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Yector Error Correction Estimates

Date: 0311012 Time: 1413

Sample {adjusted): 195103 200004
Included observations: 198 after adjustments
Standard errars in () &t-statistics in [1

Cointegration Restrictions
B(1,13=-1, B2, Z1=-1, B{1 3)=0, B{2,31=1,
A3, 2)=0, Af4,13=0
Convergence achieved after 20 iterations.
Restrictions identify all cointegrating vectars
LR test for hinding restrictions (rank= 2):

Chi-sgquare(2) 0.231446
Frobability 0.895187
Cointegrating Eq: CointEg1 CointEg2
LAYE-1) -1.000000 0.390453
(0.04582)
[8.52083]
LMME-13 0873217 -1.000000
(0.02954)
[19.4065]
LMCPI-1: 0.000000 1.000000
TBILRATE(-1) -0.017036 -0.071476
(0.01223) (0.01086)
[1.39236] [6.52817]
C A.085386 -2.260835
Error Correction: DILNY} DiLNM) DILNCFPl)  D(TBILRATE)
CointEg1 -0.014125 -0.019216 -0.o11807 0.000000
(0.006ES) (0.00647) [0.00345) (0.00000)
[2.11334] [-2.99284] [-3.41606] [ MA]
CointEg2 0.025154 0.014406 0.000000 2007536
(0.00880) (0.00828) {0.00000) (0.53939)
[2.85949] [1.74020] [ A [3.72191]

The specification test (for which you need to overidentify the cointegrating vector) does not reject
the null hypothesis that this restricted form is at least as good as the basic case.
You can of course go further and test other theoretical restrictions.

17



