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Advanced time-series analysis (University of Lund, Economic History Department) 

 30 Jan-3 February and 26-30 March 2012 

Lecture 3 Monte Carlo simulations and Bootstrapping. 

3.a. What is a Monte Carlo simulation? 

Imagine you have a truffle-seeking pig. You would like to know how good she is. You cannot just let 
her loose in the forest and count the number of truffles he found, since you do not know how rich in 
truffles the area was. You need a controlled experiment. 

So you choose an area, rail it off, and you randomly bury truffles. Now, you can let the pig loose, and 
you can count how many of the truffles were found. But one experience is not enough: after all, what 
if your pig was just too lucky or was disturbed by a squirrel? So you should repeat the experiment as 
many times as possible. As the number of experiments goes toward infinity, the hit ratio of your pig 
that you calculated from the experiments will get closer and closer to the real hit probability of the 
pig (law of large numbers…). 

This is a Monte Carlo simulation. 

Monte Carlo experiments are based on repeated random sampling. It was first used in Los Alamos 
National Laboratory by John von Neuman, Stanislaw Ulam and Nicholas Metropolis, the first two 
were mathematicians and the third one was nuclear physicist, to find out how far neutrons would 
travel in different materials (important for radiation shielding). The codename for the then secret 
method was Monte Carlo. 

We use Monte Carlo experiments in cases when we know the random process behind a 
phenomenon, but an analytical solution would be far too difficult to achieve.   

 

3.b A simple example: the critical values for a DF unit-root test 

We know that if the null-hypothesis of the DF test is correct, the distribution of the coefficients will 
not follow the student’s t distribution. As a consequence, you will need different critical values. One 
way to have an adjusted table is to design an MC experiment! 

We are going to assume that the DGP is the following: 

11t t ty y     where  (0,1)t WN and 0 1y   

So what we are going to do is the following: 

We choose sample size, let us say 100. Then we will use a random number generator to create a 
series based on the above DGP. This is basically a sample. Then we run a basic DF test: 

0 1 1t t ty y u      and we calculate the test statistics as α1 divided by the standard error of it. WE 

store this statistics. 

Then we redo this experiment 9999 times (so we have 10000 experiments in total) and store all the 
test statistics. Our estimate for the critical value of the unit root test statistics is going to be the lower 
fifth percentile (in case of a one-tailed test). 
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the code in Eviews 

wfcreate dfsimu u 1 10000 'we create the workfile called dfsimu with 10000 observations 
series testresults 'this is the variable where we store our testresults for final analysis 
 
scalar fivepercentcrit 'this is where we store our estimate of the 5% critical value 
 
for !i=1 to 10000 'we will repeat this 1000 times 
 
series y=0 ' we create the series y with the starting value 0 
smpl 2 101 'no we need to reset the sample to 2-101  
y=1+y(-1)+nrnd ' we generate the random series according our assumptions 
 
equation eq.ls d(y) c y(-1)  'we run the test regression on the generated 100 observations 
smpl @all 'we reset the sample to the 1 10000 
 
testresults(!i)=eq.@tstats(2) 'save the test stat 
 
next 'return to the start of the for loop 
 
fivepercentcrit=@quantile(testresults,.05) 
 

By changing the parameters you can come to a table of your own: 

 

Simulated critical values of a DF test (10000 experiments)  

level of significance 
(one-tailed) 

10% 5% 1% 

n=100 

without constant -1.599 -1.950 -2.566 

with constant -1.466 -1.871 -2.547 

n=50 

without constant -1.603 -1.966 -2.573 

with constant -1.507 -1.898 -2.696 

   

3.c. Storage and hunger in an ancient society 

There is a debate on the ability to have long-term storage of grain in pre-industrial societies. The 
historical evidence is sporadic and not decisive. McCloskey and Nash1 utilized a simple probabilistic 
approach to find out whether the storage was. They assumed that grain production followed a 
normal probability distribution with mean 100 and standard deviation 35 and found out that this 
leads to very long waiting times between famines. Van Leeuwen et al (2011)2 continued in their 

                                                           
1 McCloskey, D. N. and Nash, J. (1984) Corn at interest: the extent and cost of grain storage in medieval 

England, American Economic Review, 74, 1, 174–87 
2 van Leeuwen, B., Földvári, P. and Pirngruber, R. (2011) Markets in pre-industrial societies: storage in 

Hellenistic Babylonia in the medieval English mirror. Journal of Global History (2011) 6, pp. 169–193 
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footsteps and after revising the parameters of the distribution of production and used a Monte Carlo 
simulation to find out which type of inter-annual grain storage was feasible. 

Obviously, without storage you can easily calculate the chance of a hunger. If the production is 
normally distributed with mean 100 and std. dev. 35, and the average yield is just 40% higher than 
the famine limit (so the famine limit is 60). All you need is to look it up in a standard normal 
probability distribution table how likely it is that you obtain a value equal or lower than 60. 

Since 
60 100

1.142
35

z


   , we are interested in the p-value of the standard normal distribution 

at z, which is about 0.127. So with this the chance of a hunger would 12.7%. The average waiting 

time between two famines is 
1 0.127

6.87
0.127


 so roughly 7 years. This is not far from the picture 

suggested by historical records. 

If we assume that there was storage we cannot do this easily, so we need a simulation. 

We assume the following rules: 

1. If the production is above the famine limit, 0<c<1 share of the output is stored. This is our 
carryover parameter. The storage cannot be negative. Also you will not store if storage 
would reduce your consumption below the limit. 

2. If the production is below or equal the famine limit, agents will consume as much from the 
storage that their consumption just exceeds the famine limit. 

3. Storage is assumed not to decay over time (this is a simplification). 

Obviously, the process is serially correlated so any outcome depends on the history of the process. 
What we do here is that we simulate 1000 periods 1000 times.  

'wfcreate storage u 1 1001 
series q 'output  
series cons 'consumption 
series storage=0 'storage starting level 
scalar co=0.05 'carryover 
series famine 'here we store if there was a famine, 1 means famine 0 otherwise 
scalar limit=70 'famine limit 
series chfamine 'chance of famine 
scalar  waiting 'number of periods between two famines 
for !j=1 to 1000 
for !i=2 to 1001 
 
q(!i)=35*@nrnd+100 'output in period i is simulated as a normally distributed proces 
 
' if there is no famine, you will store some of the harvest and consume the rest 
if q(!i)>limit*(1+co) then         
storage(!i)=storage(!i-1)+co*q(!i)  
cons(!i)=q(!i)*(1-co)  
endif 
 
' if you have just enough you will not store this obviously never happens since we have anormal random variable 
and the chance that is takes the value 60 is null. Still, for theoretical consistency I include this here. 
if  q(!i)=limit*(1+co) then   
storage(!i)=storage(!i-1) 
cons(!i)=q(!i) 
endif 
 
' if your output was not enough then you will use up the storage provided it is enough 
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if q(!i)<limit*(1+co) and storage(!i-1)>=(limit-q(!i)) then  
  storage(!i)=storage(!i-1)-(limit-q(!i)) 
  cons(!i)=limit 
endif 
  
' if storage is not enough you use up as much as possible 
if q(!i)<limit*(1+co) and storage(!i-1)>0 and storage(!i-1)<(limit-q(!i)) then  
  storage(!i)=0 
  cons(!i)=q(!i)+storage(!i-1) 
endif 
  
'if you do not have storage at all, you obviously cannot do anything 
if q(!i)<limit*(1+co) and storage(!i-1)=0  then 
  storage(!i)=0 
  cons(!i)=q(!i) 
  endif 
 
next 
 
smpl 2 1001 
famine=cons<limit 
 
smpl 1 1001 
chfamine(!j)=@mean(famine) 
next 
 
scalar waiting=1/@mean(chfamine)-1 

I am sure that you could find an even more elegant (=parsimonious) way to write the code but this 
will do for now. Again, you can create a table: 

Average waiting time between famines under different carryovers 

carryover 0% 1% 2% 5% 

famine limit=60 6.9 11.8 37.2 469 

famine limit=70 4.1 5.4 7.8 123 

Note: output is assume to be a normally distributed random variable with mean 100 and standard deviation 35 

Obviously, the 5% carryover can be rejected, as it would have basically eradicated society wide 
hunger. Depending on what we believe about the productivity of pre-industrial agriculture, however, 
some minor storage could have been possible. In the paper we used a production with much lower 
standard deviation, based on new data. This enabled us to reject the possibility of any systematic 
storage.  

3.d. Bootstrapping 

Unlike in case of an MC experiment, we use the bootstrapping when we do not know the Data 
Generating Process, i.e., we have no idea about the underlying distribution of the data. Since we do 
not know the population you will create samples using your sample only by drawing with 
replacement. For this reason we call this procedure resampling. It is important that the new samples 
should have the same size and the original sample! 

For an example we take the data of Austrian conscripts height by Komlos. 
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Looking at the sample, we estimate the mean at 167.8 cm. it is quite obvious that the heights are not 
normally distributed. This is not surprising, the data is truncated: recruitment boards anly registered 
those with a minimum posture. 

You can also run a regression: 

 

Alternatively you can have an estimate by bootstrap: 

 matrix height=@convert(heightcm) 'here I have to convert the heights to a vector 
series mean 
for !i=1 to 1000 
matrix bs=@resample(height) 'resampling with replacement 
mtos(bs,h) 'conversion of the vector to a variable 
mean(!i)=@mean(h) 
next 
 
mean.hist 
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Series: MEAN
Sample 1 145802
Observations 1000

Mean       167.8252
Median   167.8259
Maximum  167.8739
Minimum  167.7812
Std. Dev.   0.014023
Skewness  -0.045728
Kurtosis   3.282167

Jarque-Bera  3.665934
Probability  0.159938

 

We get about the same mean and standard deviation as in case of a regression with constant. This is 
not surprising: whatever distribution the data has the sample mean is going to be an unbiased 
estimator of the expected value of the population.  The distribution of the parameter estimate is 
going to converge to normal. So we did not gain anything from this exercise except that you now can 
do a bootstrap (actually bootstrapping is rarely very useful). 
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Let us use bootstrapping in a regression. We regress height on age: 

 

So, on average if a recruit was one year older it was 16,5 mm taller in the sample. Our 95% 
confidence interval for this coefficient would be: 

0.0250.164 0.002 0.164 0.002 1.96 0.16008 0.16792Z        

I used standard normal distribution instead of a Student’s t because at high degrees of freedom (it is 
now 145800) it converges to standard normal. 

How would you do the same with bootstrapping? 

1. You run the regression 

2. You save the residual and the fitted value 

3. You resample the residual and add it to the fitted value. This will be you dependent variable 
in step 4. 

4. You rerun the regression with the variable and store the coefficient 

5. You repeat steps 3 and 4 many hundred or thousand times. 

6. You take the 2.5 and 97.5 percentiles of the bootstrapped coefficients. These are the limits of 
your confidence interval. 

The Eviews code is: 

equation eq.ls heightcm c age 'I run the regression  
eq.makeresids res 'I store the residuals 
series yfit=heightcm-res 'I store fitted values 
 
vector resm=@convert(res) 'here I have to convert the residuals to a vector 
series coeff 
for !i=1 to 10000 
matrix bsres=@resample(resm) 'resampling with replacement 
mtos(bsres,residual) 'conversion of the vector to a variable 
equation eq.ls yfit+residual(1) c age 'I rerun the regression on the bootstrapped dependent var 
coeff(!i)=eq.@coefs(2) ' I save the coefficient 
next 
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scalar lower=@quantile(coeff,0.025) 
scalar upper=@quantile(coeff, 0.975) 

After 1000 repeated resampling, I got 0.1608-0.1686 as confidence interval. 

After 10000 repetitions I obtain 0.1607-0.1687, so having much more resampling did not improve the 
results much.  


