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Advanced time-series analysis (University of Lund, Economic History Department) 

30 an-3 February and 26-30 March 2012 

Lecture 8 Optional (depending on previously acquired knowledge): Fundamentals of system 

estimation. Problems of identification. ILS, 2SLS, GMM. 

 

8.a. When is the exogeneity assumption violated? 

 

From the Classical Linear Model, we know that when the orthogonality or exogeneity condition is 

violated, that is, ( ) 0E xu  , the parameters will be estimated with bias. 

 

Such violation may occur in several cases: 

1. Measurement error in a right-hand side variable, even if it has a zero mean and is IID, can 

lead to biased estimates. 

2. Omitting an important variable from the model. 

3. Having simultaneity, that is, a two-way causal relationship between the explanatory and the 

dependent variables. 

 

We are going to look at option 3 now. 

 

Let us take a classical case of the Keynesian cross: 

0 1t t tC Y u    which is the standard Keynesian absolute income hypothesis 

 t t tY C I  , which is an equality, true for a closed economy. 

 

In this system of equations we have two endogenous variables: Yt and Ct and a single exogenous 

variable, It. Endogenous variables are determined within the system, while the value of exogenous 

variables is given by some un-modeled process.  

If you were to estimate the first equation with an OLS, that would be tantamount with assuming the 

lack of the second relationship. Such a case leads to simultaneity bias. 

Why? 

Let us express the two endogenous variables using the two equations: 
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These are the so-called reduced form equations. Please observe that the equation for Yt also includes 

ut at the right hand side. That is, Yt and ut are correlated and this is a violation of the orthogonality 

assumption. 

But let us think further about the reduced form equations: 

What here happened is simply that we expressed each endogenous variable as a function of the 

exogenous variables. This can be done for all systems. 
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Since endogenous variables are determined within the system, they cannot be responsible for long-

run changes in the system. Simply, if you had no exogenous factors (no exogenous variables or 

shocks) the system should sooner or later settle at its equilibrium (or steady state). The endogenous 

variables would have a constant value and that is it. It is the exogenous factors (variables and shocks) 

that finally determine the long-run movements of the endogenous variables. The reduced form 

equations express this feature of the endogenous variables. For this reason the coefficients from the 

reduced-form equations are the long-run effects of a change in an exogenous variable on the 

endogenous variable. 

Any additional unit of investment will, for example, finally lead to 
1

1

1 
unit increase in output, 

where 1 is the marginal propensity to consumption (this is the Keynesian investment multiplier). 

 

What if we had no exogenous effect in our system? 

0 1t tC Y    and 0 1t tY C    

Obviously our reduced form equations would have constant value, showing that the variables should 

settle to a constant equilibrium value. 
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8.b Identification 

 

We, of course, wish to estimate the parameters in the equations of the system. This cannot be done 

with OLS because of simultaneity bias, so you need to find an alternative way. 

One possible way could be to use the reduced-form equations. 

For the above problem, we could estimate one of the reduced form equations and so have an 

estimate of its coefficients: 
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As such, the coefficients could be estimated form these coefficients as follows:  
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This is a clear case: using the parameters of the reduced form equations we could arrive at unique 

solution for the parameters of the system. 

 

When you can arrive at unique estimates for the parameters of an equation based on the reduced 

form equation, the equation is exactly identified. 

 

The estimation method that uses the parameter estimates from the reduced form equations to 

express the coefficients of an equation of a system is called the Indirect Least Squares (ILS). ILS can 

only be used for exactly identified equations. 
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Is it possible to have an equation for which you cannot have a solution? Yes it is, then the equation is 

non-identified or unidentified. 

Let us see a case for this: 

We have a classic equilibrium model for a good: 

0 1

S

t t tQ P u    for the supply and 

 

0 1

D

t t tQ P v    for the demand. 

This becomes a system if we believe that there is an equilibrium: 
S D

t t tQ Q Q  . 

 

0 1t t tQ P u     

0 1t t tQ P v     

The endogenous variables are Q and P and there are no exogenous variables. The reduced-form 

equations yield: 
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The problem is that now you could not arrive at a solution to the parameters. Neither of the 

equations is identified. 

 

What would happen if we were to introduce an exogenous variable, say income (Y), to the demand 

equation? 

0 1t t tQ P u     

0 1 2t t t tQ P Y v       

Then you would obtain the following reduced form equations: 
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Now, by dividing the Y coefficient of the reduced form for Q by the coefficient of Y from the reduced 

form equation for P, you could get an estimate for 1 . Using this you could also calculate 0 . Still 

you could still not estimate the coefficients of the demand equation. So by introducing an exogenous 

variable to one equation we could exactly identify the other equation. 

 

It is also possible to have equations where you could have more than one possible solutions for the 

coefficients: these are over-identified equations. You could add another exogenous variable to the 

demand equation, like wealth (W): 

0 1t t tQ P u     

0 1 2 3t t t t tQ P Y W v         

Now the first equation is over-identified, since you could get two solutions for both parameters, but 

the second equation is still underidentified. 
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How can we make both equations exactly identified? Simply by adding a single exogenous variable to 

each equation. 

0 1 2 1t t t tQ P P u        

and 

0 1 2t t t tQ P Y v       

where Pt-1 is a predetermined variable (past value of an endogenous variable). 

 

Let us see the general rule: 

An equation with m number of endogenous variables is exactly identified if it does not contain at 

least m-1 of the exogenous and predetermined variables of the system.  

If the number of omitted exogenous or predetermined variable is less than m-1, the equation is 

underidentified. If it does not contain more than m-1 exogenous or predetermined variables then it is 

over-identified. 

 

Let us take an example: 

 

0 1 2 1t t t tQ P P u        

0 1 2 3t t t t tQ P Y W v         

The number of endogenous variables in the system is 2 (Qt and Pt). 

The number of exogenous or predetermined variable sin the system is 3 (Yt, Wt, Pt-1). 

The first equation has 2 endogenous variables (the dependent variable should also be added!), but it 

does not have 2 of the exogenous or predetermined variables (Yt and Wt). Since m-1=1 this equation 

is overidentified. 

The second equation also has two endogenous variables, and it does not contain Pt-1 of the 

exogenous or predetermined variables. As a result it is exactly identified. 

 

8.c. Estimating the parameters of a simultaneous system 

 

One solution could be to estimate all equations simultaneously. The most popular estimator of this 

kind is the Full-Information Maximum Likelihood (FIML) estimator. This assumes that the error 

terms are jointly normally distributed. (It assumes a multivariate normal distribution for the vector of 

errors.) This allows for the errors to be correlated between equations.  

The FIML method is efficient if the assumption regarding the distribution of the residuals is correct. 

 

Let us see an example: 

We have a simple system: 

10 11 12 1ln ln lnt t t tY I Y u        

20 21 1 22ln ln lnt t t tI I Y v       

where Y is the real GDP and I is the real investments. 

Logically, even though investments cause real GDP to grow, more income leads to more investment. 

The predetermined variables are the first lags of the endogenous variables.  
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Now with a simple OLS by equation we would obtain: 

  

 
 

With an FIML the results are different: 

 
Now we find that the immediate impact of a growth in investment is statistically insignificant on real 

GDP, and the magnitude of the effect of real GDP on investments also reduced.  
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Another solution can be to estimate the system by equation. 

The ILS will only work for equations that are exactly identified. For equations that are overidentified 

you need to use either a 2SLS or a GMM estimator. 

 

2-stage least squares 2SLS: 

Let us use the first example for the explanation. 

 

0 1t t tC Y u     

t t tY C I   

 

The OLS could not be used to estimate the equation for consumption, since Yt was correlated with ut. 

Now we need to turn to instrumentation. 

An instrument is a variable that is correlated with the endogenous variable, but does not correlate 

with the residual. Such an instrument is the exogenous variable It. Basically, what we should do is to 

project Yt on the column vector space defined by It, which is orthogonal to (uncorrelated with) ut. We 

can use the reduced form equation for Y for this purpose: 

0 1t t tY I e     

Now here It is an instrument, and the fitted value 0 1
ˆ

t ty I   is the instrumented Yt. This cannot 

be correlated with ut, since It is uncorrelated with ut. The residual term et will hold that component of 

Yt which correlates with the residual term ut. 

Running this regression is the first-step. 

The second step is to estimate the original equation but this time with the instrumented variable 

instead of the endogenous variable: 

0 1
ˆ

t t tC Y u     

Now you should obtain the unbiased estimates of the alpha parameters. 

A great advantage of the 2SLS is that it can estimate overidentified equations as well, which would 

not be possible to be done with ILS. 

Let us try this procedure in Eviews withTable f5.1 with realinvst as instrument! 

 

2SLS output from the Eviews 
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Could we overidentify the equation? Yes! 

Let us rewrite our model: 

0 1t t tC Y u     

t t t tY C I G    

where Gt is the government expenditures.  

The first-step (reduced form equation) becomes: 

0 1 2t t t tY I G e       

 
Over-identification of the equation makes it possible that you test the validity of your instruments, 

namely if they are really uncorrelated with the residual. This is done with the Sargan and the Hansen 

tests. 

The null-hypothesis of these tests is that the instruments are uncorrelated with the residual, so they 

are indeed exogenous and valid. In this case we cannot reject the null-hypothesis at 10% level of 

significance, so our estimates are acceptable. 

 

How does the Sargan test work? 

First you estimate the 2SLS. Now you save the residuals from it. If these residuals can be explained by 

your set of instruments in a statistical significant way, you have invalid instruments. 

In essence this is a test regression of the residuals form you 2SLS on your instruments: 

  
The joint insignificance of the model is indicative that the instruments are indeed exogenous. 

 

Generalized Method of Moments (GMM): 
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First you need to understand what the method of moments is. 

The idea is simple. Instead of minimizing the residual sum of squares, the coefficients of the 

regression model is estimated based on assumption regarding its moments. 

For example, if you have the model: 

0 1t t ty x u    , then our assumptions regarding the moments are: 

 

 ( ) 0tE u  and ( ) 0t tE u x  this are moment restrictions, and two restrictions are enough to 

estimate two coefficients. This is a case of exact identification. 

All that we need to do is to create an objective function, like this: 

   
2 2

0 1( , , , ) ( ) ( )t t t t tV x y E u E u x     and choose those coefficient which bring this as close to 

zero as possible. 

 

What is x and u are correlated? Then we need an instrument z, which is correlated with x but 

uncorrelated with u: ( ) 0t tE u z  , ( , ) 0t tCov x z  . 

The new moment restrictions are: 

( ) 0tE u   

( ) 0t tE u z   

Two restrictions can also lead to two parameter estimates. Now the objective function is something 

like this: 

   
2 2

0 1( , , , , ) ( ) ( )t t t t t tV x y z E u E u z      

 

But what happens if we have an over-identified equation? Then we have more than one instrument 

for x, which yields additional moment conditions. Say, we have another instrument denoted by wt. 

Then our moment conditions are: 

( ) 0tE u   

( ) 0t tE u z   

( ) 0t tE u w   

Three conditions for two parameters: a clear case of over-identification. You could, of course, simply 

minimize the following objective function: 

      
2 2 2

0 1( , , , , ) ( ) ( ) ( )t t t t t t t tV x y z E u E u z E u w        

but there is no guarantee that this would lead to the lowest possible value. Instead, you should 

attach weights to each condition. This makes the method a Generalized Method of Moments, that 

has been suggested by Hansen. The weighting gets important only when there is a case of over-

identification. 

The weights themselves are also parameters to be estimated. This is possible by successive steps. 

This is the reason why you can have one-step, two-step or n-step GMM estimation. 

The value of the objective function is the J-statistics. If you have an exact identification, its value can 

only be zero. If you have overidentification, its value can actually be more than zero. If your  

instruments are good, however, it should be statistically indifferent from zero. This is the J-test, 

which is equivalent with Sargan-test. 
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Results from an iterative n-step GMM procedure 

 


