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Lecture 8 Optional (depending on previously acquired knowledge): Fundamentals of system
estimation. Problems of identification. ILS, 25LS, GMM.

8.a. When is the exogeneity assumption violated?

From the Classical Linear Model, we know that when the orthogonality or exogeneity condition is
violated, that is, E(xu) # 0, the parameters will be estimated with bias.

Such violation may occur in several cases:
1. Measurement error in a right-hand side variable, even if it has a zero mean and is IID, can
lead to biased estimates.
2. Omitting an important variable from the model.
Having simultaneity, that is, a two-way causal relationship between the explanatory and the
dependent variables.

We are going to look at option 3 now.

Let us take a classical case of the Keynesian cross:
C, = a, + oY, +U, which is the standard Keynesian absolute income hypothesis

Y, =C, + 1, which is an equality, true for a closed economy.

In this system of equations we have two endogenous variables: Y, and C; and a single exogenous
variable, I;.. Endogenous variables are determined within the system, while the value of exogenous
variables is given by some un-modeled process.

If you were to estimate the first equation with an OLS, that would be tantamount with assuming the
lack of the second relationship. Such a case leads to simultaneity bias.

Why?

Let us express the two endogenous variables using the two equations:

1
C, :1—a1 (g + oyl +uy)

Y, = ! (ap+u, +1,)

1
These are the so-called reduced form equations. Please observe that the equation for Y, also includes
u; at the right hand side. That is, Y; and u, are correlated and this is a violation of the orthogonality
assumption.
But let us think further about the reduced form equations:
What here happened is simply that we expressed each endogenous variable as a function of the
exogenous variables. This can be done for all systems.



Since endogenous variables are determined within the system, they cannot be responsible for long-
run changes in the system. Simply, if you had no exogenous factors (no exogenous variables or
shocks) the system should sooner or later settle at its equilibrium (or steady state). The endogenous
variables would have a constant value and that is it. It is the exogenous factors (variables and shocks)
that finally determine the long-run movements of the endogenous variables. The reduced form
equations express this feature of the endogenous variables. For this reason the coefficients from the
reduced-form equations are the long-run effects of a change in an exogenous variable on the
endogenous variable.

Any additional unit of investment will, for example, finally lead to unit increase in output,
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where ¢, is the marginal propensity to consumption (this is the Keynesian investment multiplier).

What if we had no exogenous effect in our system?
C =a,+a)Y, and Y, = 5, + BC,
Obviously our reduced form equations would have constant value, showing that the variables should
settle to a constant equilibrium value.
a,+a + B«
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8.b Identification

We, of course, wish to estimate the parameters in the equations of the system. This cannot be done
with OLS because of simultaneity bias, so you need to find an alternative way.
One possible way could be to use the reduced-form equations.
For the above problem, we could estimate one of the reduced form equations and so have an
estimate of its coefficients:

a, o,

C, =m, +ml, +V,where 7, = VT =
1-o 1-o

As such, the coefficients could be estimated form these coefficients as follows:

Vs
! =a1and7r0(1—1 ! ]:ao.

1+, + 7,

This is a clear case: using the parameters of the reduced form equations we could arrive at unique
solution for the parameters of the system.

When you can arrive at unique estimates for the parameters of an equation based on the reduced
form equation, the equation is exactly identified.

The estimation method that uses the parameter estimates from the reduced form equations to
express the coefficients of an equation of a system is called the Indirect Least Squares (ILS). ILS can
only be used for exactly identified equations.




Is it possible to have an equation for which you cannot have a solution? Yes it is, then the equation is
non-identified or unidentified.

Let us see a case for this:

We have a classic equilibrium model for a good:

Q’ = a, + P, +U, for the supply and

QID = [, + B,P, +V, for the demand.

This becomes a system if we believe that there is an equilibrium:

QA =Q"=Q.

Q =a,+oP +y,

Qt :ﬂo +ﬂ1R +Vi
The endogenous variables are Q and P and there are no exogenous variables. The reduced-form
equations yield:

P :ao_,Bo + U —V and Q, :ﬁ0+ﬁl(a0_ﬁ0)+ﬂl(ut_Vt)+vt
ﬂl_al ﬂl_al ﬂl_al ,81—051

The problem is that now you could not arrive at a solution to the parameters. Neither of the
equations is identified.

What would happen if we were to introduce an exogenous variable, say income (Y), to the demand
equation?
Q =y +R +y,

Qt zﬂo +ﬂ13 +ﬂ2Yt +Vi

Then you would obtain the following reduced form equations:

=) _%=5_ B Y, + U=V g Q :ao+a1(ao_ﬂo)_ ap, Y +al(ut_vt)
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Now, by dividing the Y coefficient of the reduced form for Q by the coefficient of Y from the reduced

form equation for P, you could get an estimate for ¢, . Using this you could also calculate «, . Still

you could still not estimate the coefficients of the demand equation. So by introducing an exogenous
variable to one equation we could exactly identify the other equation.

It is also possible to have equations where you could have more than one possible solutions for the
coefficients: these are over-identified equations. You could add another exogenous variable to the
demand equation, like wealth (W):

Q =, +aR +y,

Q =5+LR+5Y + LW, +V,
Now the first equation is over-identified, since you could get two solutions for both parameters, but
the second equation is still underidentified.



How can we make both equations exactly identified? Simply by adding a single exogenous variable to
each equation.

Q = taR +a,R  +y,
and
Qt :ﬂo +ﬂ1Fi +ﬂ2Yt +V;

where P, is a predetermined variable (past value of an endogenous variable).

Let us see the general rule:

An equation with m number of endogenous variables is exactly identified if it does not contain at
least m-1 of the exogenous and predetermined variables of the system.

If the number of omitted exogenous or predetermined variable is less than m-1, the equation is
underidentified. If it does not contain more than m-1 exogenous or predetermined variables then it is
over-identified.

Let us take an example:

Q =taR +a,R  +y,

Qt = ﬂo +ﬁ1Fi +:32Yt +ﬁ3\Nt +Vi

The number of endogenous variables in the system is 2 (Q; and Py).

The number of exogenous or predetermined variable sin the system is 3 (Y, W,, P..1).

The first equation has 2 endogenous variables (the dependent variable should also be added!), but it
does not have 2 of the exogenous or predetermined variables (Y, and W,). Since m-1=1 this equation
is overidentified.

The second equation also has two endogenous variables, and it does not contain P, of the
exogenous or predetermined variables. As a result it is exactly identified.

8.c. Estimating the parameters of a simultaneous system

One solution could be to estimate all equations simultaneously. The most popular estimator of this
kind is the Full-Information Maximum Likelihood (FIML) estimator. This assumes that the error
terms are jointly normally distributed. (It assumes a multivariate normal distribution for the vector of
errors.) This allows for the errors to be correlated between equations.

The FIML method is efficient if the assumption regarding the distribution of the residuals is correct.

Let us see an example:

We have a simple system:

InY, =, +oy, Inl, + e, INY,, +U,

Inl, =a,,+a, Inl_, +a,, InY, +Vv,

where Y is the real GDP and | is the real investments.

Logically, even though investments cause real GDP to grow, more income leads to more investment.
The predetermined variables are the first lags of the endogenous variables.




Now with a simple OLS by equation we would obtain:

System: S5YS

Estimation Method: Least Squares

Date: 02/0212 Time: 21:20

Sample: 195002 200004

Included observations: 203

Total system (balanced) observations 406

Coefficient Std. Error t-Statistic Frob.

C(10) 0.209051 0.027363 7.639996 0.0000

C(11) 0.047853 0.006588 7.263999 0.0000

C(12) 0.939537 0.008136 115.4727 0.0000

C(20) -0.602152 0156723  -3.842154 0.0001

c(21) 0.139234 0.046633 4.057944 0.0001

C(22) 0.847448 0.037779 2243177 0.0000
Determinant residual covariance 1.18E-07

Equation: LOG(REALGDP)=C(10+C{11/*LOG{REALINVS)+C(12)
*LOG(REALGDP{-1))
Observations: 203

R-squared 0.999668 Mean dependentvar 8.316882
Adjusted R-squared 0.999665 5.D. dependentvar 0.484569
S.E. of regression 0.008867 Sum squared resid 0.015724
Durbin-¥atson stat 1.287174

Equation: LOG{REALINVS)=C{20)+C(21)LOG(REALGDP)+C(22)
*LOG(REALINVS(-1))
Observations: 203

R-squared 0.993619 Mean dependent var 6.309457
Adjusted R-squared 0.993556 5.D. dependentvar 0.599525
S.E. of regression 0.048136 Sum squared resid 0463415
Durbin-Y¥atson stat 1.537421

With an FIML the results are different:

System: SYS

Estimation Method: Full Information Maximum Likelihood (Marguardt)
Date: 02/0212 Time: 21:25

Sample: 195002 200004

Included observations: 203

Total system (balanced) observations 406

Convergence achieved after 55 iterations

Coeflicient Std. Error z-Statistic Prob.

C(10) 0.047541 0.040089 1.185909 0.2357
C(11) 0.005605 0010171 0.551008 0.5818
C(12) 0.991081 0.012401 79.91503 0.0000
C(20) -0.265898 0154338  -2.370765 0.0178
C(21) 0.117040 0.048627 2406877 0.0181
C(22) 0.905266 0.041030 2206365 0.0000
Log likelihood -1889.131  Schwarz criterion 18.76917
Avg. log likelinood -4.653031 Hannan-Quinn criter. 18.71086
Akaike info criterion 18.67124
Determinant residual covariance 8.19E-08

Equation: LOG{REALGDP)=C{10)+C{11)*LOG(REALINVS)+C(12)
*LOG(REALGDP(-1))
Observations: 203

R-squared 0.999600 Mean dependentvar 8.316882
Adjusted R-squared 0.999586 35.D. dependentvar 0.484569
S.E. of regression 0.009736 Sum squared resid 0.018958
Durbin-Watson stat 1.312035

Equation: LOG{REALINVS)=C{20)+C{21)*LOG{REALGDP)+C(22)
*LOG(REALINVS(-1))
Observations: 203

R-squared 0.993543 Mean dependentvar 5.309467
Adjusted R-squared 0.993478 35.D. dependentvar 0.589625
S.E. ofregression 0.048424 Sum squared resid 0.458969
Durbin-Watson stat 1.626699

Now we find that the immediate impact of a growth in investment is statistically insignificant on real
GDP, and the magnitude of the effect of real GDP on investments also reduced.



Another solution can be to estimate the system by equation.
The ILS will only work for equations that are exactly identified. For equations that are overidentified
you need to use either a 2SLS or a GMM estimator.

2-stage least squares 2SLS:

Let us use the first example for the explanation.

C =a,+aY, +U,
Y, =C, +1,

The OLS could not be used to estimate the equation for consumption, since Y, was correlated with u,.
Now we need to turn to instrumentation.

An instrument is a variable that is correlated with the endogenous variable, but does not correlate
with the residual. Such an instrument is the exogenous variable I;. Basically, what we should do is to
project Y; on the column vector space defined by I;, which is orthogonal to (uncorrelated with) u.. We
can use the reduced form equation for Y for this purpose:

Yo =4+ Al +8
Now here I, is an instrument, and the fitted value Y, = A, + A4 |, is the instrumented Y,. This cannot

be correlated with uy, since |, is uncorrelated with u,. The residual term e, will hold that component of
Y; which correlates with the residual term u..

Running this regression is the first-step.

The second step is to estimate the original equation but this time with the instrumented variable
instead of the endogenous variable:

C =q, +051YAt +U,
Now you should obtain the unbiased estimates of the alpha parameters.
A great advantage of the 2SLS is that it can estimate overidentified equations as well, which would

not be possible to be done with ILS.
Let us try this procedure in Eviews withTable f5.1 with realinvst as instrument!

2SLS output from the Eviews

Dependent Variable: REALCOMNS
Method: Two-Stage Least Squares
Date: 02/02M12 Time: 22:04

Sample: 195001 200004

Included observations: 204
Instrument specification: REALINVE C

Variable Coefficient Std. Error {-Statistic Prob.

C -147.3792 G.631673  -22.22354 0.0000

REALGDFP 0.689691 0.001325 520.4592 0.0000
R-zquared 0.999293 Mean dependentwvar 2999 436
Adjusted R-squared 0.999289 S.D. dependentwvar 14598707
S.E. of regression 3891183 Sum squared resid 3058543
F-statistic 270877.8 Durbin-Watson stat 0.323007
Prob(F-statistic) 0.000000 Second-Stage 3SR 22396714
J-statistic 3.8BE-41 Instrument rank 2




Could we overidentify the equation? Yes!

Let us rewrite our model:
C =a,+a), +\,
Y,=C, +1,+G,
where G, is the government expenditures.
The first-step (reduced form equation) becomes:
Yt :ﬂo +ﬂllt +12Gt +&
Dependent Variable: REALCOMNS
Method: Two-Stage Least Squares
Date: 0210212 Time: 22:05
Sample: 195001 200004

Included observations: 204
Instrument specification: REALINVS C REALGOVT

Variable Coefficient Std. Error t-Statistic Prob.
C -146.4722 6.518678  -22.46961 0.0000
REALGDP 0.689492 0.001298 531.2619 0.0000
R-squared 0.998292 Mean dependentvar 2999 436
Adjusted R-squared 0.998289 3.D. dependentvar 1459.707
S.E. of regression 3892724 Sum squared resid 2060967
F-statistic 282239.2 Durbin-Watson stat 0.322612
Prob{F-statistic) 0.000000 Second-Stage 3SR 4855381,
J-statistic 0.540997 Instrument rank 3
Prob{J-statistic) 0.462020

Over-identification of the equation makes it possible that you test the validity of your instruments,
namely if they are really uncorrelated with the residual. This is done with the Sargan and the Hansen
tests.

The null-hypothesis of these tests is that the instruments are uncorrelated with the residual, so they
are indeed exogenous and valid. In this case we cannot reject the null-hypothesis at 10% level of
significance, so our estimates are acceptable.

How does the Sargan test work?
First you estimate the 2SLS. Now you save the residuals from it. If these residuals can be explained by
your set of instruments in a statistical significant way, you have invalid instruments.

In essence this is a test regression of the residuals form you 2SLS on your instruments:

Dependent Yariable: RESIDOT
Method: Least Squares

Date: 02/0212 Time: 22:15
Sample: 195001 200004
Included observations: 204

Variable Coefficient Std. Error t-Statistic Prob.
C 7.872781 13.02563 0.604407 0.5463
REALINWS 0.013392 0.018531 0722678 0.4707
REALGOVT -0.016658 0.023160  -0.719255 04728
R-squared 0.002678 Mean dependentwvar -6.20E-13
Adjusted R-squared -0.007245 35.0D. dependentvar 3883125
S E. ofregression 3897167 Akaike info criterion 1017814
Sum squared resid 305276.9 Schwarz criterion 1022684
Log likelihood -1035.171  Hannan-Quinn criter. 1019788
F-statistic 0.269882 Durbin-Watson stat 0.330543
Prob(F-statistic) 0.763746

The joint insignificance of the model is indicative that the instruments are indeed exogenous.

Generalized Method of Moments (GMM):




First you need to understand what the method of moments is.

The idea is simple. Instead of minimizing the residual sum of squares, the coefficients of the
regression model is estimated based on assumption regarding its moments.

For example, if you have the model:

Y, = By + B X +U,, then our assumptions regarding the moments are:

E(u,) =0and E(u, - X,) = 0 this are moment restrictions, and two restrictions are enough to

estimate two coefficients. This is a case of exact identification.
All that we need to do is to create an objective function, like this:

V (B, B % Vi) :(E(ut))z +(E(u, -Xt))2 and choose those coefficient which bring this as close to

zero as possible.

What is x and u are correlated? Then we need an instrument z, which is correlated with x but
uncorrelated with u: E(u, -z,) =0, Cov(x,z)#0.

The new moment restrictions are:

E(u,)=0

E(u,-z)=0

Two restrictions can also lead to two parameter estimates. Now the objective function is something
like this:

V(B B % Yoo 2) = (E(U)) +(E(U, - 2,))°

But what happens if we have an over-identified equation? Then we have more than one instrument
for x, which yields additional moment conditions. Say, we have another instrument denoted by w,.
Then our moment conditions are:

E(u,)=0
E(u,-z)=0
E(ut Wt) =0

Three conditions for two parameters: a clear case of over-identification. You could, of course, simply
minimize the following objective function:

V(Bys B % ¥or 2) = (E(U))” +(E(U, -2))* +(EU, - W)’

but there is no guarantee that this would lead to the lowest possible value. Instead, you should
attach weights to each condition. This makes the method a Generalized Method of Moments, that
has been suggested by Hansen. The weighting gets important only when there is a case of over-
identification.

The weights themselves are also parameters to be estimated. This is possible by successive steps.
This is the reason why you can have one-step, two-step or n-step GMM estimation.

The value of the objective function is the J-statistics. If you have an exact identification, its value can
only be zero. If you have overidentification, its value can actually be more than zero. If your
instruments are good, however, it should be statistically indifferent from zero. This is the J-test,
which is equivalent with Sargan-test.



Results from an iterative n-step GMM procedure

Dependent Variable: REALCONS

Method: Generalized Method of Moments

Date: 02/02M12 Time: 22:36

Sample: 195001 200004

Included observations: 204

Linear estimation with 1 weight update

Estimation weighting matrix: HAC (Bartlett kernel, Newey-West fixed
bandwidth = 5.0000)

Standard errors & covariance computed using estimation weighting matrix

Instrument specification: REALINVS C REALGOVT

Variable Coefficient Std. Error t-Statistic Prob.

c -146.3493 11.95132  -12.24545 0.0000

REALGDP 0.G89476 0.002259 305.1839 0.0000
R-squared 0.999292 Mean dependentvar 2999.436
Adjusted R-squared 0999239 S.D. dependentvar 1459707
S.E. of regression 38.92874 Sum squared resid 3061203
Durbin-Watson stat 0322575  J-statistic 0.132056
Instrument rank 3 Prob(J-statistic) 0.716310




